FILE: GE-1198 February 12, 2013

TITLE:

GEOTECHNICAL INVESTIGATION

PROPOSED RESIDENTIAL SUBDIVISION

NW 24-19-23-W2M

R. M. OF DUFFERIN, SASKATCHEWAN

CLIENT:

MR. LYLE BATEMAN

FILE NO:

GE-1198

DATE:

FEBRUARY 12, 2013

TABLE OF CONTENTS

		PAGE NO.
1.0	INTRODUCTION	1
2.0	DESCRIPTION OF SITE	2
3.0	FIELD AND LABORATORY INVESTIGATION	2
4.0	GEOTECHNICAL ANALYSIS	4
4.1	Geology	4
4.2	Stratigraphy	5
4.3	Groundwater	6
5.0	SLOPE STABILITY	7
5.1	History of Slope Movement	7
5.2	Stratigraphy	7
5.3	Topography	8
5.4	Groundwater	8
5.5	Discussion	8
6.0	SLOPE STABILITY ANALYSIS	9
6.1	Soil Strength Parameters	9
6.2	Stability Analysis	10
6.3	Site Development Guidelines	11
7.0	FOUNDATION CONSIDERATIONS	12
7.1	Spread Footing and/or Post and Pad Type Foundation System	13
7.2	Bored Concrete Piles	13
8.0	EXCAVATION CONSIDERATIONS	14
9.0	FLOOR SLAB CONSIDERATIONS	15
9.1	Structurally Supported Floor Systems	15
9.2	Grade Supported Floor Slabs	15
10.0	SANITARY SEWAGE TREATMENT DISPOSAL RECOMMENDATIONS	16
10.1	Saskatchewan Onsite Wastewater Disposal Guide	16
10.2	Shoreland Pollution Control Regulations	17
10.3	Sewage Disposal Recommendations	17
- 0.0	20 Mago 2 is postar recommendations	1 /
11.0	OTHER	18
12.0	CLOSURE	19

TABLE OF CONTENTS (cont'd)

DRAWINGS

Site Plan
Classification of Soils for Engineering Purposes
GE-1198-1
GE-1198-2
Symbols and Terms Used in the Report
GE-1198-3 to -4
Stratigraphic Cross Sections
GE-1198-5 to -7
Test Hole Logs
GE-1198-8 to -17
Grain size Analyses
GE-1198-18 to -22

APPENDICES

APPENDIX A: Slope Stability of Existing Valley Wall Cross Sections

APPENDIX B: Granular Materials Specifications

GROUND ENGINEERING CONSULTANTS LTD.

CIVIL & GEOENVIRONMENTAL ENGINEERS

415 - 7th AVENUE • REGINA • SASKATCHEWAN • CANADA • S4N 4P1 TELEPHONE: (306) 569-9075 FAX: (306) 565-3677 EMAIL: groundeng@accesscomm.ca

FILE: GE-1198 February 12, 2013

Mr. Lyle Bateman 3138 College Avenue REGINA, Saskatchewan S4T 1V7

Dear Sir:

SUBJECT: GEOTECHNICAL INVESTIGATION

PROPOSED RESIDENTIAL SUBDIVISION

NW 24-19-23-W2

R.M. OF DUFFERIN, SASKATCHEWAN

1.0 INTRODUCTION

This report presents the results of a site specific subsurface soils investigation and geotechnical analysis carried out at the above captioned site located approximately 2 km south of the Village of Disley, Saskatchewan. It is understood that the proposed residential subdivision development includes 17 residential lots with associated infrastructure. The objectives of this investigation were to provide the following information:

- .1 To define the subsurface soil stratigraphy and engineering properties of the foundation soils;
- .2 To provide design and installation recommendations for the most suitable and economical foundation system to support the proposed residential buildings;

A MEMBER FIRM OF THE CONSULTING ENGINEERS OF SASKATCHEWAN

SOIL	MECHANICS	AND	FOUNDATION	CONSULTAN	NTS 🗆	SITE	INVESTIGA	SMOITA		-OUNDATIC	N DESIGN
SPECIF	ICATIONS		NSTRUCTION	SUPERVISION	N 🗆	INSPECT	TION AND	LABOR	ATORY	TESTING	SERVICES
SOILS	□ CONCR	ETE 🗆	ASPHALT	☐ PAVEMENT	DESIGN	AND EV	ALUATION	□ SLO	PE STA	ABILITY [REPORTS
SEEPAG	GE CONTROL	BARRIE	ERS FOR ML	INICIPAL AND	INDUSTRIA	L WAST	E CONTAIN	VMENT	□ ENV	IRONMENT	AL STUDIES

- .3 To comment on possible excavation and construction problems related to foundation construction with particular reference to groundwater conditions;
- .4 To provide recommendations for floor slab design and construction;
- .5 To perform a slope stability analysis of the valley wall, comment on possible slope stability problems and provide recommendations for site development, including development restrictions, suitable building sites and set-back distances for residential development;
- .6 To provide recommendations on pertinent geotechnical issues identified during the subsurface investigation.

Authorization to proceed with this work was received in your e-mail dated October 11, 2012.

2.0 DESCRIPTION OF SITE

The study area shown in Figure 1 is located in the northwest quarter of 24-19-23-W2M overlooking the north valley wall of the Qu'Appelle Valley. The property includes a strip of land at the top of the valley wall (north end of property) and the majority of the north valley wall. The property has not been previously developed and is currently being used as pasture land. There is an elevation difference of up to 65 metres between the top of the valley wall and the Qu'Appelle River flood plain.

3.0 FIELD AND LABORATORY INVESTIGATION

The subsurface conditions were investigated by drilling 10 test holes at the locations shown on Drawing No. GE-1198-1. The test holes were drilled on October 23, 25, 26 and 29, 2012 using a truck-mounted, Brat 22 digger equipped with a 150 mm diameter continuous flight auger and a 200 mm diameter hollow stem auger. The test holes were drilled to depths ranging from 7.6 to 30.5 metres below existing ground surface.

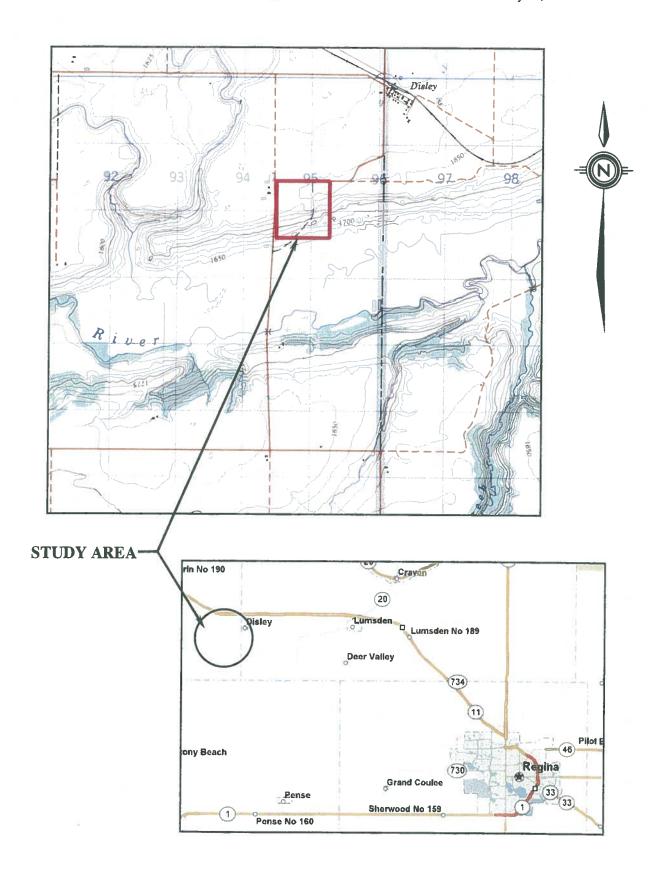


FIGURE 1
LOCATION OF STUDY AREA

Representative disturbed auger samples, spilt-spoon and undisturbed Shelby tube soil samples were recovered from the test borings at selected intervals and were taken to our laboratory for analysis. Each soil sample was visually examined to determine its textural classification and natural moisture content tests were performed on each soil sample. In addition, grain size analyses, Atterberg Limits, sulphate content, unconfined compressive strength and dry density tests were performed on selected soil samples. Estimates of the undrained shear strength of the soil were made using both a pocket penetrometer and a laboratory vane shear apparatus. Standard Penetration tests were conducted in Test Holes 101, 105, 106, 107 and 110. Standpipe piezometers were installed in Test Holes 101, 104, 105, 106, 107, 109 and 110. Details of the soil profile, samples taken, laboratory test results, piezometer installations and stratigraphic interpretations of the subsoils are presented on Drawing Nos. GE-1198-5 to -22, inclusive.

The test hole locations, ground surface elevations and piezometer elevations were surveyed by Midwest Surveys Ltd., with the exception of Test Hole 108 which could not be located at the time of the survey (snow covered). The location of Test Hole 108 was determined using hand held GPS equipment and the ground surface elevation was estimated from the contour plan provided by Midwest Surveys.

4.0 GEOTECHNICAL ANALYSIS

4.1 Geology

The study area is located in the physiographic division known as the Assiniboine River Plain. The prominent landform adjacent to the valley wall is an outwash plain. The glacial sediments which form the surficial geology in the study area consist of surficial outwash sands, clay and till strata. The existing valley was carved out of the till plain by glacial meltwater during the last deglaciation period. The underlying bedrock consists of Upper Cretaceous shale of the Bearpaw Formation. The valley has since been partially filled with alluvium.

4.2 Stratigraphy

The drilling information indicates that the surficial topsoil is underlain by glacial drift sediments which generally consist of an upper sand stratigraphic unit underlain by a till stratigraphic unit which extends to the bedrock surface. Where present, the sand stratigraphic unit extends to depths ranging from 1.2 to 13.1 metres below existing grade. The sand unit was not encountered in Test Holes 102, 103 and 104. The sand is predominantly fine grained to medium grained and loose to medium dense with Standard Penetration "N" values in the order of 5 to 16 blows per foot. Typical gradations of the sand unit are shown on Drawing Nos. GE-1198-18 to -22, inclusive. In Test Holes 101 and 108, the sand is saturated below depths of 7.3 and 6.7 metres, respectively.

The sand unit is underlain by a clayey till stratigraphic unit which extends to depths ranging from 4.9 to 26.5 metres below existing grade. The till unit was not encountered in Test Hole 104. The term till on the borehole logs indicates that the material originates from geological processes associated with glaciation. These processes produce a material that is heterogeneous in composition and as such, may contain pockets and/or seams of material such as sand, gravel, silt or clay. Fine grained sand lenses were encountered in Test Holes 105 through 110, inclusive. In Test Holes 106 and 110, the sand lenses are saturated. The till is clayey, moist and stiff to hard in consistency with undrained shear strengths in the order of 75 to 535 kPa based on unconfined compressive strength tests. Atterberg Limits test results indicate that the till has a Liquid Limit in the order of 32 percent and a Plasticity Index in the order of 20 percent which classifies it as a medium plastic material. The average dry density of the till is 1.94 tonnes per cubic metre.

The glacial sediments are underlain by shale bedrock (Bearpaw Formation) which extends to the maximum depth penetrated in the test holes (30.5 metres). The bedrock surface was not penetrated in Test Holes 102, 103 and 108. The shale consists of non-calcareous, highly plastic clay of marine origin which contains interbedded silt and bentonitic layers. The shale at this site is very stiff to hard in consistency. The variable composition of the shale results in a wide variation in engineering properties. The dry density of the shale ranges from 1.48 to 1.66 tonnes per cubic metre. Atterberg Limits test results indicate that the shale has a Liquid Limit ranging from 69 to 103 percent and a Plasticity Index ranging from 43 to 82

percent. The undrained shear strength of the shale ranges from 135 to 220 kPa based on unconfined compression tests.

4.3 Groundwater

The drilling information indicates that there is a perched water table in the surficial sand unit at the top of the valley wall. Along the edge of the valley wall, the surficial sand is drained, however, the underlying till also contains saturated sand and gravel lenses. Springs occur where these saturated sand and gravel lenses outcrop on the valley wall. Water levels in the piezometers were measured by our technologist after installation and again on November 8 and December 6, 2012. The piezometric surface measurements are summarized in Table 1, below:

TABLE 1
PIEZOMETRIC SURFACE MEASUREMENTS

STANDPIPE PIEZOMETER NO.	DATE MEASURED	DEPTH TO BOTTOM OF SCREEN FROM GROUND SURFACE (m)	GROUNDWATER LEVEL BELOW GRADE (m)	PIEZOMETRIC SURFACE (mASL)
	October 23, 2012		7.86	556.09
TH 101	November 8, 2012	8.2	7.40	556.55
	December 6, 2012		7.31	556.64
	October 23, 2012		Dry	
TH 104	November 8, 2012	14.3	Dry	556.09 556.55 556.64
	December 6, 2012		Dry	
	October 23, 2012		Dry	
TH 105	November 8, 2012	14.3	Dry	
	December 6, 2012		12.79	508.13
	October 23, 2012		Dry	
TH 106	November 8, 2012	15.8	9.34	507.99
	December 6, 2012		6.88	510.45
į	October 23, 2012		Dry	
TH 107	November 8, 2012	17.3	13.09	520.86
	December 6, 2012		12.97	520.98
	October 23, 2012		Dry	
TH 109	November 8, 2012	28.0	Dry	556.55 556.64 508.13 507.99 510.45 520.86 520.98 555.35
	December 6, 2012		Dry	
	October 23, 2012		Dry	
TH 110	November 8, 2012	27.1	7.40	555.35
	December 6, 2012		7.18	555.57

Water levels in the upper sand unit and sand lenses in the till unit will fluctuate with seasonal variations in precipitation and infiltration. Piezometers founded in the Bearpaw Formation (THs 104, 105, 106 and 109) may not yet be fully stabilized due to the extremely low permeability of the clay shale.

5.0 SLOPE STABILITY

5.1 History of Slope Movement

The Qu'Appelle Valley is the remnant of an early post glacial drainage system. During the last deglaciation, rushing meltwater cut a large, steep-walled valley through the surficial glacial deposits and into the underlying shale bedrock. Undercutting of the bedrock foundation materials undermined the slopes and produced the slumping activity which is still evident in some areas along the valley wall. The slumped areas form the ridges and localized discontinuities in surface drainage now present on the valley wall. The slumping activity has now largely subsided due to the deposition of post-glacial alluvium in the valley which has produced a buttressing effect, helping to stabilize the valley walls. However, gradual creep type movements of the old landslide slump blocks may still be occurring in some areas.

5.2 Stratigraphy

The surficial outwash sand and underlying glacial till are relatively competent soils. The underlying shale bedrock may contain weak layers or bentonite beds which are highly susceptible to landslide movement. The bedrock surface was penetrated at elevations ranging from 538.4 to 506.9 metres (Geodetic). The drilling information indicates that the bedrock surface slopes down towards the bottom of the valley and down from west to east.

One of the main factors controlling slope stability is the position of the till/shale contact with respect to the bottom of the valley wall. Where the till/shale contact is at or above the base of the valley, slopes are flatter and the slump blocks are more frequent. These slopes may actually be less stable than the steeper sloped areas where the till/shale contact is well below the present elevation of the valley bottom. According to the drilling information, the till/shale contact in the study area is slightly above the bottom of the valley wall. The slump blocks have been severely eroded and deposition of alluvial sediments has helped to stabilize the toe of the slope by providing a buttressing effect.

5.3 Topography

The valley wall exhibits the distinctive topographic features of a slope which has been subjected to landsliding. The identifying features are a steep headscarp and a hummocky broken slope. On air photographs, a series of arcuate, interconnected rear headscarps and a pattern of subparallel ridges down the slope are evident. Luxuriant vegetation growth is evident in the numerous undrained closed depressions which have formed behind many of the slump blocks.

5.4 Groundwater

One of the major factors controlling slope stability is the position of the water table. It is generally accepted that a slope that is fully drained will stand at an angle approximately twice that of a slope that has the groundwater table at surface. A high water table induces a higher water pressure at the slide surface which tends to hold the soil particles apart, thereby reducing the effective stress. The total weight of overlying soil is taken by the sum of the pore pressure and the effective stress between soil particles. Therefore, a rise in the water table causes a reduction in the factor of safety against sliding, conversely, lowering the water table would tend to stabilize the slide.

5.5 Discussion

Once landsliding has occurred on a valley slope, the factor of safety with respect to slope stability would be close to unity under natural conditions before any new developments constructed by man. The factor of safety is defined as the resisting forces divided by the driving forces. A safety factor close to 1.0 means that small changes in the stress environment may initiate additional down slope movement in the landslide slump blocks. Usually these movements are gradual creep type movements that range from a few millimetres to possibly several centimetres per year. Large, sudden drops in the order of 300 to 600 mm may also occur, however, these types of movements are less common than gradual creep type movements.

Development on the slopes will usually result in a reduction in the safety factor against sliding due to:

- .1 An increase in the groundwater table due to lawn watering and reduction in surface evaporation;
- .2 Installation of a water supply system which leads to higher groundwater levels via pipe leaks and increased water consumption;
- .3 Landscaping which cuts the toe of individual slump blocks and/or places fill at the top of old slides. This results in decreased resisting forces and increased driving forces. Importing fill material generally increases the driving forces on a slide;
- .4 Increased surcharge loads due to road construction and the construction of new buildings.

6.0 SLOPE STABILITY ANALYSIS

The purpose of a slope stability analysis is to determine the factor of safety of a potential failure surface. The analysis involves passing an assumed slip surface through the slope and dividing the inscribed portion into slices. The factor of safety is defined as a ratio between the resisting force and the driving force both applied along the potential failure surface. When the driving force due to the weight of the soil is equal to the resisting force due to shear strength, the factor of safety is equal to 1 and failure is imminent. The slope stability analysis was performed using the *Slide Version 6.0* computer software developed by Rocscience Inc. An effective stress slope stability analysis using the Morgenstern-Price method and half sine interslice force function was used.

6.1 Soil Strength Parameters

The soil strength parameters were interpreted using index properties of the materials determined during the geotechnical testing at the site in addition to our previous experience and information available in our Company files. The parameters used in our slope stability analysis are summarized in Table 2, below:

TABLE 2
SOIL STRENGTH PARAMETERS

	PEAK ST	RENGTH		
SOIL TYPE	Friction Angle	Cohesion	UNIT WEIGHT	
Sand	30°	0 kPa	18.0 kN/m ³	
Sand (Saturated)	15°	0 kPa	18.0 kN/m ³	
Till (reduced)	19°	6 kPa	20.5 kN/m ³	
Pierre Shale (reduced)	14°	5 kPa	16.5 kN/m ³	
Pierre Shale (failure plane)	7°	0 kPa	16.5 kN/m ³	
Alluvium	15°	0 kPa	18.0 kN/m ³	

6.2 Stability Analysis

The slope stability analysis was completed at three cross sections along the valley wall in the proposed subdivision. Slope failures along the Qu'Appelle Valley system are typically seated in weak zones located within the shale bedrock. The factor of safety was generated by modelling a weak plane slightly below the surface of the bedrock shale sloping toward the bottom of the valley. The factor of safety was calculated at each cross section location for the existing conditions, as shown in Table 3, below

TABLE 3
FACTOR OF SAFETY – EXISTING CONDITIONS

Cross Section Location	Factor of Safety
1-1	1.06
2-2	1.14
3-3	1.18

Our test results and slope stability analysis indicates that minimum safety factors along the valley wall are in the order of 1.06 to 1.18. The stability analysis of the existing conditions is shown on the figures included in Appendix A. In each of the figures, all of the potential failure surfaces with a factor of safety less than 1.3 are shown. The location of the surfaces indicates areas of the slopes which are more susceptible to future landslide movement. The results indicate that the lower portion of the valley wall in the west portion of the development is the least stable portion of the site (Cross Section 1-1). Prior to deposition of the alluvial sediments within the valley bottom, when the valley was formed and the

initial slope failures occurred, the factor of safety would be at, or slightly below 1.0. In areas where the shale bedrock outcrops above the alluvium, the factor of safety remains relatively low, as is noted at Cross Section 1-1.

6.3 Site Development Guidelines

Development in an area of previous landslide activity involves some risk. The risk is associated with the possible reactivation of old landslides or the creation of entirely new landslides which the <u>Owner</u> must accept. At the present time, the proposed residential lots are considered to be feasible from a geotechnical engineering standpoint provided development controls are implemented to minimize the risk of future landslides and to avoid areas with the higher risk. No additional development on the valley wall is recommended without prior review by a geotechnical engineer. To minimize the potential problems associated with slope stability, the following guidelines are provided for lot development at this time.

- Buildings constructed in landslide terrain should be located entirely on one (1) slump block. Therefore, if movement occurs, the building would move with the block to minimize damage to the structure. If a building is constructed across two (2) slump blocks, the blocks may move at different rates and cause severe damage to the building. The approximate location of suitable building sites for the proposed development are shown on Drawing No. GE-1198-1. In order to accurately identify suitable building sites, additional inspections are recommended once the individual property boundaries (lots) have been surveyed (pinned) in the field.
- .2 Landscaping should ensure a minimum of 2% slope away from the perimeter of the building.
- .3 Water should be encouraged to drain off the property. No landscaping should be done which results in water ponding on the slope. The natural drainage courses down the valley wall should be maintained as best as possible. Lawn watering should be kept to a minimum on the valley wall. Excessive lawn watering will reduce the factor of safety against landsliding.

- .4 The valley walls are highly susceptible to erosion. Removal of existing vegetation should be kept to a minimum. Areas where the vegetation is removed should be revegetated as soon as possible. Any erosion which does occur should be repaired immediately.
- .5 No fill greater than 0.6 metres in depth should be placed at the edge of or on the valley wall without approval from a geotechnical engineer. No cuts greater than 2.5 metres should be allowed without approval from a geotechnical engineer. Excess cut material may be placed as fill at the toe of the slope.
- .6 Embankments for roadway construction should be backsloped to a maximum slope of three (3) horizontal to one (1) vertical.
- .7 Swimming pools can leak and contribute substantial quantities of water into the soil. For this reason, swimming pools are not recommended for this subdivision.
- Residential buildings on Lot 17 should be restricted to a perimeter area of 1200 square feet. All proposed developments on Lots 10 to 17, inclusive should be reviewed by a geotechnical engineer to ensure development complies with the recommended development controls and does not adversely affect slope stability.

7.0 FOUNDATION CONSIDERATIONS

It is anticipated that the foundation loads from the proposed residential buildings will be relatively light. The soil conditions at this site vary including coarse grained sand, silty till and Bearpaw Shale (highly plastic clay). The recommended foundation system is dependent on the soil conditions encountered at each building site. Where sand is encountered, a shallow concrete footing type foundation system is recommended. Shallow concrete footings or a bored concrete pile type foundations may be used in areas where till is encountered, however, difficulties may be encountered with boulders and sandy zones when excavating bored piles. A bored concrete pile type foundation system is recommended for Lot 17 where shale is encountered at the foundation elevation.

Additional test holes or test pits may be required prior to construction in order to determine the most suitable type of foundation system at each proposed building location. Our specific design recommendations for each type of foundation system are presented below:

7.1 Spread Footing and/or Post and Pad Type Foundation System

- .1 Properly constructed shallow spread footings bearing on the undisturbed native till and/or sand soil may be designed for a safe net bearing pressure of 140 kPa (3,000 psf). Maximum toe pressure under wind loading may exceed the average pressure by no more than one-third (1/3). Regardless of footing pressure considerations, the minimum width of footings should be 450 mm.
- The footings should be placed at a minimum depth of 1.8 metres below finished grade elevation for frost protection. If the footings are placed above this depth, insulation should be placed to prevent frost penetration into the soils beneath the footings. All footings should be adequately reinforced to resist localized stresses.
- .3 Every effort should be made to pour the footings as soon as possible after excavation is completed. The steel reinforcing mats should be made up in advance to minimize the possibility of soil disturbance during placement.
- .4 All loose or disturbed material at the base of the footing excavations should be compacted prior to placement of forms, reinforcing steel and concrete.

7.2 Bored Concrete Piles

- .1 The relatively light column loads for the building structures on the valley wall may be supported by straight shaft piles designed to develop load carrying capacity on the basis of side friction only. An average allowable skin friction value of 33.5 kPa (700 psf) based on the contact area between the pile surface and the surrounding undisturbed soil may be used at this site.
- .2 The upper two (2) metres of pile length below the final ground surface should be discounted insofar as side friction carrying capacity is concerned. It is recommended

that the minimum pile shaft diameter be 300 mm to ensure that an adequate pile cross-section is maintained for the full drilled depth. A minimum pile length of 6.0 metres is also recommended.

- .3 Temporary sleeves may be required at some locations in order to maintain an open hole during excavation of bored concrete piles at this site. It is recommended that the steel reinforcement and concrete be placed <u>immediately</u> following the completion of the pile excavations in order to minimize the potential for sloughing and/or ingress of groundwater into the piles holes.
- .4 Pile shafts carrying little or no bending moment should be reinforced with nominal vertical reinforcement in the form of intermediate grade deformed bars, composing about one-half (1/2) of one (1) percent of the cross-sectional area. The steel reinforcing cage should be projected or dowels set into the top of the caisson to tie into the foundation walls and/or columns.
- .5 Concrete used for constructing piles may be placed using the free fall method and the slump should be specified as being not less than 100 mm. This will insure that voids do not exist in the finished pile foundation units. The concrete should remain fluid in the hole until the shaft is completely full in order to take advantage of the fluid pressure in the column of concrete which will develop high pressure against the soil and maximize the shaft's capacity.
- .6 For buildings with no basement, a minimum of 75 mm of rigid insulation should be placed on the inside of all perimeter grade beams to reduce the heat losses and to prevent drying of the soils.

8.0 EXCAVATION CONSIDERATIONS

Excavations will be in the surficial till and/or sand. Conventional excavation procedures should therefore be applicable to the soils at this site. Piling contractors should be aware that difficulties may be encountered due to cobblestones and boulders in the till unit. Occupational Health and Safety Regulations require that any trench or excavation in which

persons must work must be cut back at least one (1) horizontal to one (1) vertical or a temporary shoring system must be used to support the sides of the excavation.

9.0 FLOOR SLAB CONSIDERATIONS

The soil conditions are suitable for either grade supported floor slabs or structurally supported floors constructed over a crawl space. Structurally supported floor systems, constructed over crawlspaces, are recommended on Lot 17 to prevent problems associated with differential movement of the highly plastic clay shale. The following recommendations are provided for both types of floor systems.

9.1 Structurally Supported Floor Systems

A structural floor system would be the most positive way to ensure satisfactory long term performance of the floor. We recommend the following items of work for preparation of the subgrade in the crawl space area beneath the floor slab.

- .1 The crawl space should be covered with a Permalon Ply X-150 type vapour barrier (or equivalent) to reduce the humidity in the crawl space and prevent drying of the subgrade soils.
- .2 Service lines and heating ducts could be installed beneath the floor and this would provide a more comfortable floor for the people occupying the building. Heating ducts should be insulated to prevent heat loss and potential drying of the subgrade soil.
- .3 The ground surface in the crawl space should be graded to slope towards a positive outlet in order to drain any water that may enter the crawl space area.
- .4 Provisions should be made to ventilate the crawl space area.

9.2 Grade Supported Floor Slabs

.1 The subgrade under a grade supported slab should be as uniform as possible. The surficial topsoil should be stripped from the site and the exposed subgrade should be

proof-rolled with a heavy sheepsfoot or vibratory padfoot roller. Any soft or spongy areas should be excavated and filled with compacted granular material. The final 200 mm below underside of the floor slab should be radon rock.

- .2 The concrete slab in areas where only light floor loads are to be supported, may have a minimum thickness of 100 mm. The minimum 28 day concrete compressive strength should be specified as 25 MPa.
- .3 A generous amount of reinforcing steel running both ways in the slab is desirable.
- .4 A layer of robust polyethylene sheeting should be placed between the granular base and the concrete slab to deter the migration of moisture through the floor.

10.0 SANITARY SEWAGE TREATMENT DISPOSAL RECOMMENDATIONS

10.1 Saskatchewan Onsite Wastewater Disposal Guide

It is understood that on-site wastewater treatment systems will be considered for the subdivision. A preliminary evaluation has been conducted for the subdivision according to the Saskatchewan On-site Wastewater Disposal Guide-Second Edition (January 2009). Developments are classified based on physical characteristics such as geology, hydrogeology, groundwater availability and use as well as the density of the proposed and adjacent developments.

Information gathered during our investigation indicates that the geology and hydrogeology of the subdivision is highly variable, ranging from surficial coarse grained sand layers (unconfined aquifer) to glacial till and highly plastic clay bedrock. The adjacent quarter section to the east is developed with a residential subdivision in which groundwater may be used for domestic supply. The average parcel size for the proposed subdivision is approximately 8.9 acres. Based on these characteristics, the subject property would be classified as a *Medium Density Development in a Sensitive Location*. According to the Disposal Guide, acceptable systems in this type of development include holding tanks, pressure absorption/pressure chamber systems, Type II mounds, lagoons or package treatment plants with disposal.

10.2 Shoreland Pollution Control Regulations

In addition to the Saskatchewan On-site Wastewater Disposal Guide, private sewage disposal located within 457.2 metres (1,500 feet) of the high watermark of a lake, river, stream or other body of water must conform to the Shoreland Pollution Control Regulations (SR 54/76) under the Public Heath Act (1994). The regulation states that no sewage or effluent be discharged within 152.4 metres (500 feet) of the high watermark of a lake, river, stream of other body of water. Between 152.4 and 457.2 metres (500 and 1,5000 feet) above ground filters (sewage mounds) may be considered to dispose of sewage from private dwellings. The high water mark of the Qu'Appelle River will be slightly above the base of the valley wall in the area of the proposed development.

10.3 Sewage Disposal Recommendations

Based on the above guidelines, for lots located within 500 feet of the base of the valley wall, individual holding tanks are required and the effluent picked up and disposed of offsite. For lots located between 500 and 1,500 feet from the base of the valley wall, a Type II sewage mound may be considered for onsite waste disposal. For lots greater than 1,500 feet from the base of the valley wall, a number of onsite disposal options are available. A *Detailed Investigation*, as discussed in the Saskatchewan Onsite Wastewater Disposal Guide, is required at each site where onsite wastewater disposal is considered. For proposed Lot 17, a holding tank type system is recommended because the shale bedrock is present at surface. Table 4, below, summarizes the potential sewage disposal systems for each lot based on the results of this investigation.

TABLE 4
PRIVATE SEWAGE DISPOSAL SYSTEMS

LOT NUMBER(S)	AREA OF LOT (Acres)	POTENTIAL DISPOSAL OPTIONS
1 through 9	5.00 – 8.41	Holding tanks, Pressure absorption/pressure chamber systems, Type II mounds, Lagoons (_4 Ha only), Package treatment plants with Disposal
10 through 13	4.05 - 19.93	Holding tanks, Pressure absorption/pressure chamber systems, Type II mounds, Lagoons (_4 Ha only), Package treatment plants with Disposal**
14 through 16	6.13 - 14.51	Holding Tank, Type II Sewage Mound
17	16.19	Holding Tank

^{**} Only Type II mounds or Holding Tanks are potential options within 1,500 feet of the high watermark of the Qu'Appelle River.

Design recommendations and appropriate set back distances for each type of sewage disposal system are included in the Saskatchewan Onsite Wastewater Disposal Guide.

11.0 OTHER

- .1 Adequate drainage away from the buildings should be provided and maintained to minimize infiltration of water into the subgrade. The building sites should be set at as high an elevation as possible in relation to the surrounding area.
- Test results on selected samples indicate that the soluble sulphate contents in the soil range from 0.11 to 0.78 percent by dry soil weight. Therefore, Class 3 Concrete, with Type 50 cement as shown in the Guide for Use of Sulphate Resistant Cement on Drawing No. GE-1198-16, is recommended for all concrete placed in contact with the native soils.
- In the event that changes are made in the design, location or nature of the project, the conclusions and recommendations included in this report would not be deemed valid unless the changes in the project were reviewed by our firm. Modification to this report would then be made if necessary. Furthermore, it is recommended that this firm be allowed an opportunity for a general review of the final design plans and specifications in order to ensure that the recommendations made in this report are properly interpreted and implemented. If this firm is not allowed the opportunity for this review, we assume no responsibility for the misinterpretation of any of the recommendations.
- This report has been prepared for Mr. Lyle Bateman and is intended for the specific application to the design and construction of the proposed residential subdivision located in NW 24-19-23-W2 in the R.M. of Dufferin, Saskatchewan. The analysis and recommendations are based in part on the data obtained from the test hole logs. The boundaries between soil strata have been established at bore hole locations. Between the bore holes, the boundaries are assumed from geological evidence and may be subject to considerable error. Contractors bidding on the project works are particularly advised against reviewing the report without realizing

the limitations of the subsurface information. It is recommended that Contractors should make such tests, inspections and other on-site investigations as is considered necessary to satisfy themselves as to the nature of the conditions to be encountered.

- .5 It is recommended that the geotechnical workscope include the following services:
 - i) geotechnical review of other design professionals' plans relative to their interpretation of geotechnical findings and recommendations, and:
 - construction monitoring to observe construction activities ii) in light of plans and specifications, and to help assure that unforeseen conditions are detected quickly to permit prompt corrective action and thus prevent minor problems from growing to major proportion.
- .6 The soil samples from this site will be retained in our laboratory for 90 days following the date of this report. Should no instructions be received to the contrary, these samples will then be discarded.

12.0 **CLOSURE**

We trust that this report is satisfactory for your purposes. If you have any questions or require additional information, please contact this office.

Association of Professional Engineers & Geoscientists of Saskatchewan

CERTIFICATE OF AUTHORIZATION

Ground Engineering Consultants Ltd.

Number C0008

Permission to Consult held by:

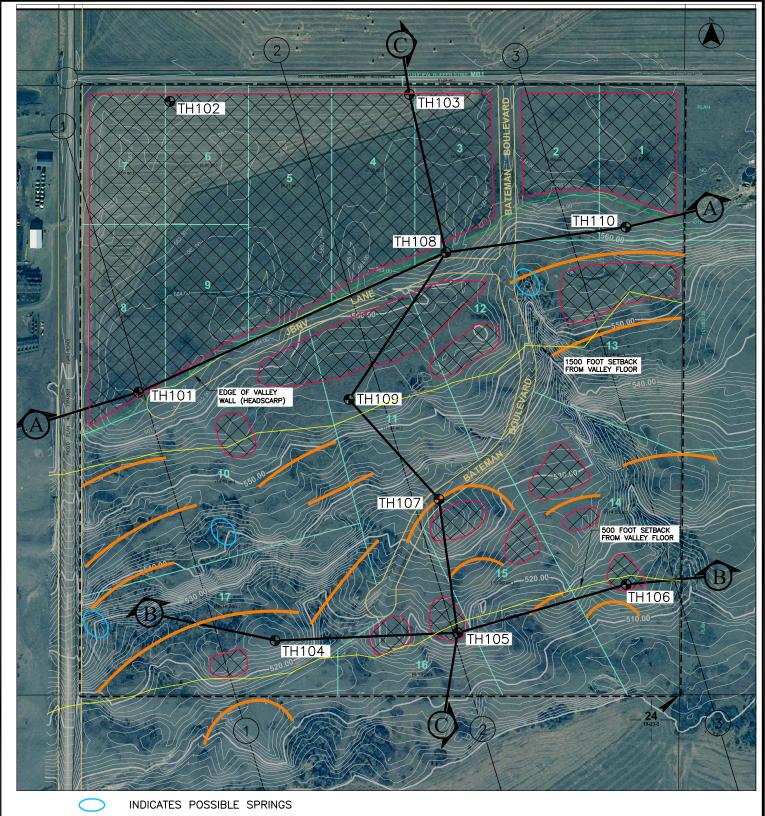
Discipline Sk. Reg. No.

Signature

Yours very truly Ground Engineering Consultation

P.C. WALSH **MEMBER 12939**

PR


Prepared by: Paul Walsh, P. Eng.

Reviewed by: Tim Adelman, P. Eng., P. Ge

PW:ss Distribution: Pw773

Mr. Lyle Bateman (3 copies; 1 pdf copy: lyle.cris@sasktel.net) Office (1 copy)

DRAWINGS

INDICATES POTENTIAL BUILDING SITE

CLIENT:

INDICATES CONTACT BETWEEN SLUMP BLOCKS

INDICATES SLOPE STABILITY CROSS SECTIONS

SURVEY PLAN PROVIDED BY MIDWEST SURVEYS INC.

GROUND ENGINEERING CONSULTANTS LTD.

CIVIL & GEOENVIRONMENTAL ENGINEERS 415-7th AVENUE REGINA, SASKATCHEWAN, CANADA

SITE PLAN SHOWING LOCATION OF TEST HOLES PROPOSED RESIDENTIAL SUBDIVISION NW 24-19-23-W2 R.M. of DUFFERIN, SASKATCHEWAN

SCALE: 1:5000

APPROVED: MR. LYLE BATEMAN FEBRUARY 12, 2013 GE-1198-

CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

ASTM Designation: D 2487 - 69 AND D 2488 - 69 (Unified Soil Classification System)

								
Maj	Major Divisions		jor Divisions Group Typical Names Symbols			Classification Crit	eria	
	tction /e	gravel-sand mixtures, little (D ₃₀)			$= \frac{D \text{ so}}{D \text{ 10}} \text{ greater than 4:}$ 1 1 and 3			
* •	Gravels or more of coarse fract etained on No. 4 sieve	Clean	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines	SP SC fications dual symb	Not meeting both criteria fo		
ils Io. 200 siev	Gravels 50% or more of coarse fraction retained on No. 4 sieve	vith fines	GM	Silty gravels, gravel-sand- silt mixtures	of fines ', GP, SW, M, GC, SM, arline classifing use of	Atterberg limits below "A" line or P.I. less than 4	Atterberg limits plot- ting in hatched area are borderline classifi-	
Coarse-grained soils 50% retained on No.	20%	Silty gravels, gravel-sand-silt mixtures GM Silty gravels, gravel-sand-silt mixtures Silty gravels, gravel-sand-silt mixtures GC Clayey gravels, gravel-sand-silt mixtures GC Clayey gravels, gravel-sand-sand-sand-sand-sand-sand-clay mixtures GC Clayey gravels, gravel-sand-sand-sand-sand-sand-sand-sand-sand		cations requiring use of dual symbols				
Coarse-grained soils More than 50% retained on No. 200 sieve	action	Clean sands	sw	Well-graded sands and gravelly sands, little or no fines	Classification on basis of percentage of fines Less than 5% pass No. 200 sieve GW, GP, SW, SP More than 12% pass No. 200 sieve GM, GC, SM, SC 5 to 12% pass No. 200 sieve Borderline classifications requiring use of dual symbols	$C_z = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ between	$= \frac{D_{60}}{D_{10}}$ greater than 6: n 1 and 3	
More	Sands Ian 50% of coarse fr passes No. 4 sieve	Clean	SP	Poorly graded sands and gravelly sands, little or no fines	ussification of pass No. 20% ass No. 20% a	Not meeting both criteria fo		
	Sands More than 50% of coarse fraction passes No. 4 sieve	Sands with fines	SM	Silty sands, sand-silt mix- tures	Cle Less than the More than 5 to 12% p	Atterberg limits below "A" line or P.I. less than 4	Atterberg limits plot- ting in hatched area are borderline classifi-	
		More	More	Sands w	sc	Clayey sands, sand-clay mixtures		Atterberg limits above "A" line with P.I. greater than 7
	s r less	r less	ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands	60	PLASTICITY	CHART	
*	ills and clav	Silts and clays Liquid limit 50% or less	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	For classification of fine-grained soils and fine fraction of coarse-grained soils. Atterberg Limits plotting in hatched area are borderline		СН	
soils No. 200 sieve	Ţ	Liquid	OL	Organic silts and organic silty clays of low plasticity		classifications requiring use of dual symbols. Equation of A-line: PI = 0.73(LL-20)		
	χ.	than 50%	мн	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts	20 PLASTICITY INDEX		OH and MH	
Fine-grained 50% or more passes	ills and clar	Liquid limit greater than 50%	СН	Inorganic clays of high plasticity, fat clays	10 7 4 CI	CL CL MI and Ol		
	· ·	Liquid II	ОН	Organic clays of medium to high plasticity	ا ،	10 20 30 40 50 LIQUID LIM	60 70 80 90 100 IIT	
	Highly	soils	Pt	Peat, muck and other highly organic soils	*Ba	sed on the material passing the	he 75mm (3in) sieve.	

SYMBOLS AND TERMS USED IN THE REPORT

CLAY

SILT

SAND

GRAVEL

ORGANIC

PEAT

TILL SHALE FILL

The symbols may be combined to denote various soil combinations, the predominate soil being heavier.

RELATIVE PROPORTIONS

RANGE		
0 - 5%		
5 - 15%		
15 - 30%		
30 - 50%		

ASTM CLASSIFICATION BY PARTICLE SIZE

er	> 300 mm		
9	300 mm - 75 mm		
l	75 mm - 4.75 mm		
coarse	4.75 mm - 2 mm		
medium	2 mm - 425 um		
fine	425 um - 75 um		
	75 um - 5 um		
	< 5 um		
	e coarse medium		

DENSITY OF SANDS AND GRAVELS

DESCRIPTIVE TERM	RELATIVE DENSITY 1	N VALUE STANDARD ² PENETRATION TEST
Very loose	0 - 15%	0 - 4 Blows per 300mm
Loose	15 - 35%	4 - 10 Blows per 300mm
Medium Dense	35 - 65 %	10 - 30 Blows per 300mm
Dense	65 - 85%	30 - 50 Blows per 300mm
Very Dense	85 100%	> 50 Blows per 300mm

CONSISTENCY OF CLAYS AND SILTS

1			
DESCRIPTIVE TERM	UNDRAINED SHEAR STRENGTH (KPa) (CFEM, 2nd Edt., 1985)	N VALUE STANDARD ² PENETRATION TEST	FIELD IDENTIFICATION (ASTM D 2488-84)
Very Soft	<12	< 2 Blows per 300mm	Thumb will penetrate soil more than 25 mm
Soft	12 - 25	2 - 4 Blows per 300mm	Thumb will penetrate soil about 25 mm
Flrm	25 - 50	4 - 8 Blows per 300mm	Thumb will Indent soil about 6 mm
Stiff	50 - 100	8 - 15 Blows per 300mm	Thumb will indent, but only with great effort (CFEM)
Very Stiff	100 - 200	15 - 30 Blows per 300mm	Readily indented by thumbnail (CFEM)
Hard	>200	> 30 Blows per 300mm	Thumb will not indent soil but readily indented with thumbnail
	Very Soft Soft Firm Stiff Very Stiff	SHEAR STRENGTH (kPa) (CFEM, 2nd Edt., 1985) Very Soft 12 - 25 Firm 25 - 50 Stiff 50 - 100 Very Stiff 100 - 200	N VALUE STANDARD N VALUE STANDARD PENETRATION TEST

NOTES: 1. Relative Density determined by standard laboratory tests.
2. N Value - Blows/300mm of a 620N hammer falling 762mm on a 50mm O.D. Split Spoon.

SYMBOLS AND TERMS USED IN THE REPORT (continued)

GROUNDWATER

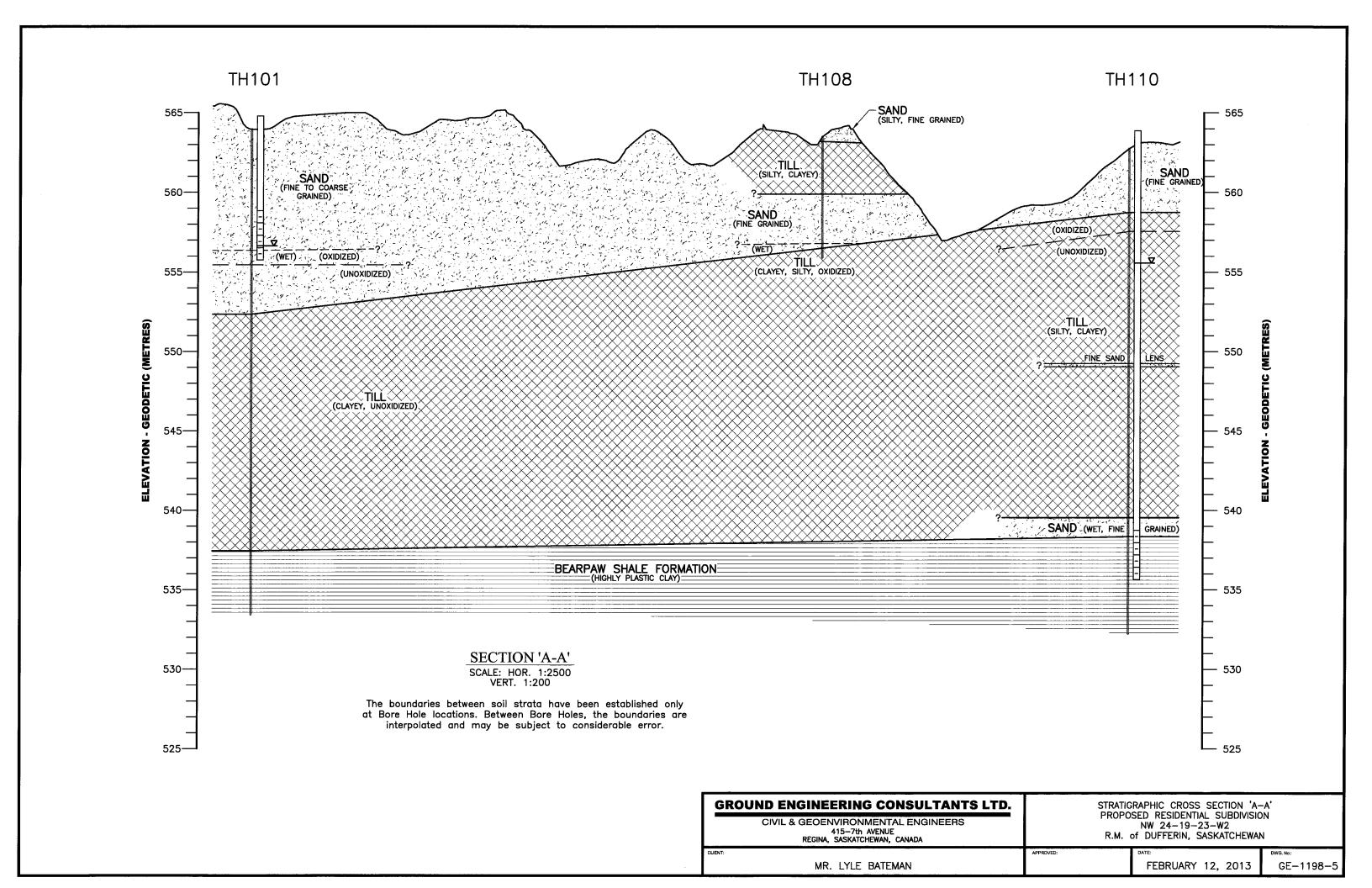
ALLUVIAL

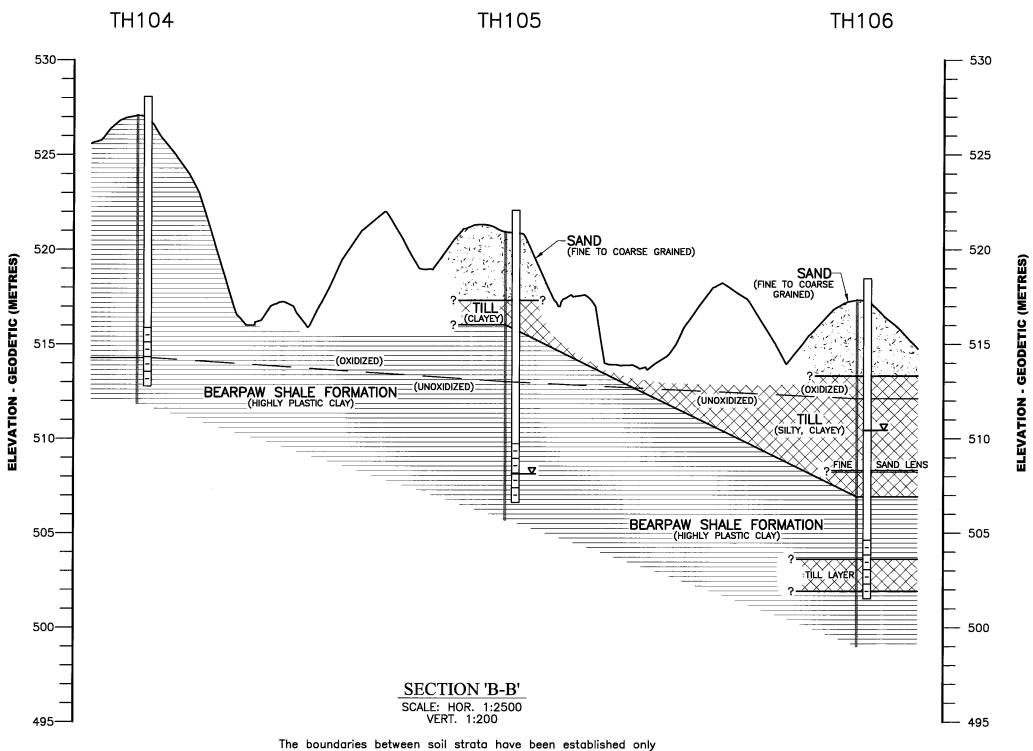
LACUSTRINE

Water level measured in the borings at the time and under the conditions indicated. In sand, the indicated levels can be considered reliable groundwater levels. In clay soil, it is not possible to determine the groundwater level within the normal scope of a test boring investigation, except where lenses or layers of more pervious waterbearing soil are present and then a long period of time may be necessary to reach equilibrium. Therefore, the position of the water level symbol for cohesive or mixed texture soils may not indicate the true level of the groundwater table. The available water level information is given at the bottom of the log sheet.

✓ Water level determined by piezometer installation – In all soils the levels can be considered reliable groundwater levels.

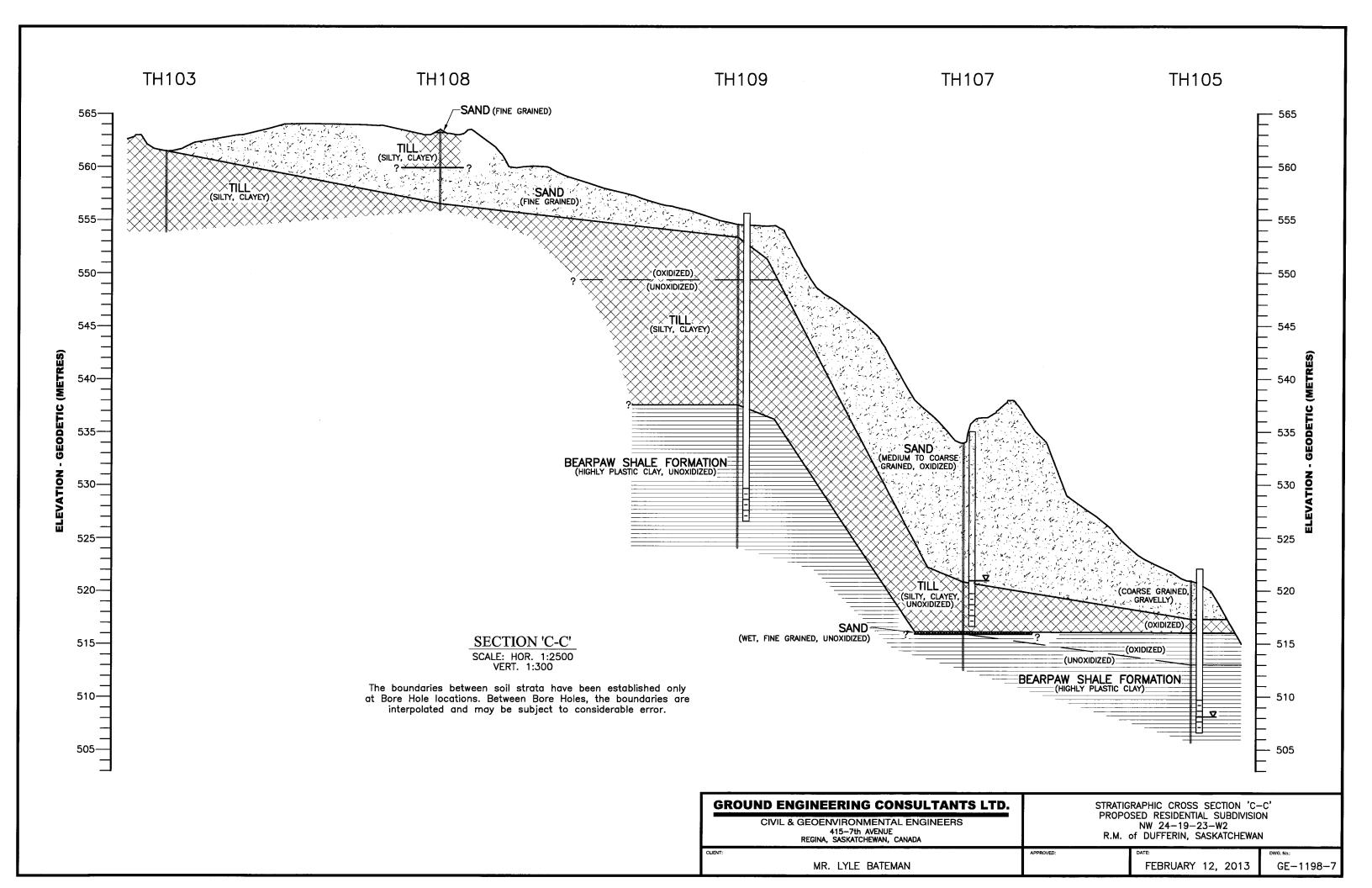
DESCRIPTIVE SOIL TERMS

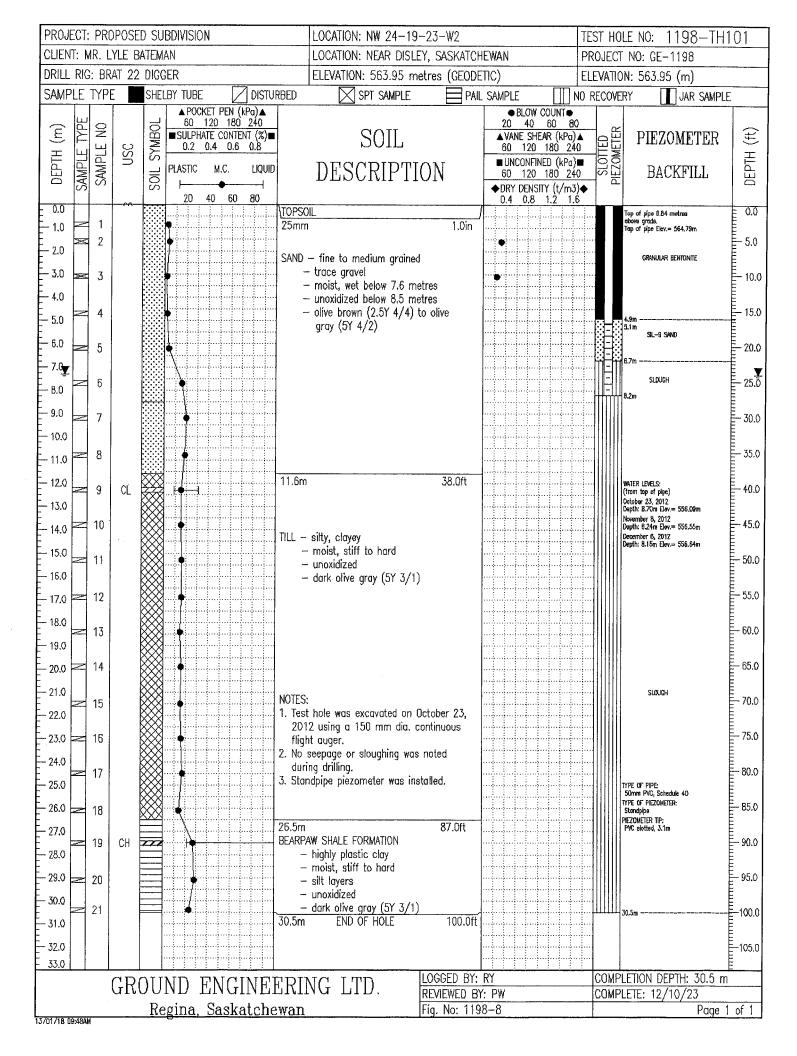

Having wide range of grain sizes and substantial amounts of all intermediate sizes. WELL GRADED **POORLY GRADED** Predominantly of one grain size. **SLICKENSIDES** Refers to a clay that has planes that are slick and glossy in appearance; slickensides are caused by shear movements. SENSITIVE Exhibiting loss of strength on remolding. **FISSURED** Containing cracks, usually attributable to shrinkage. Fissured clays are sometimes described as having a nuggetty structure. **STRATIFIED** Containing layers of different soil types. **ORGANIC** Containing organic matter; may be decomposed or fibrous. **PEAT** A fibrous mass of organic matter in various stages of decomposition. Generally dark brown to black in color and of spongy consistency. **BEDROCK** Preglacial material. DRIFT Material deposited directly by glaciers or glacial melt-water.


	- 1	
	1	
	1	

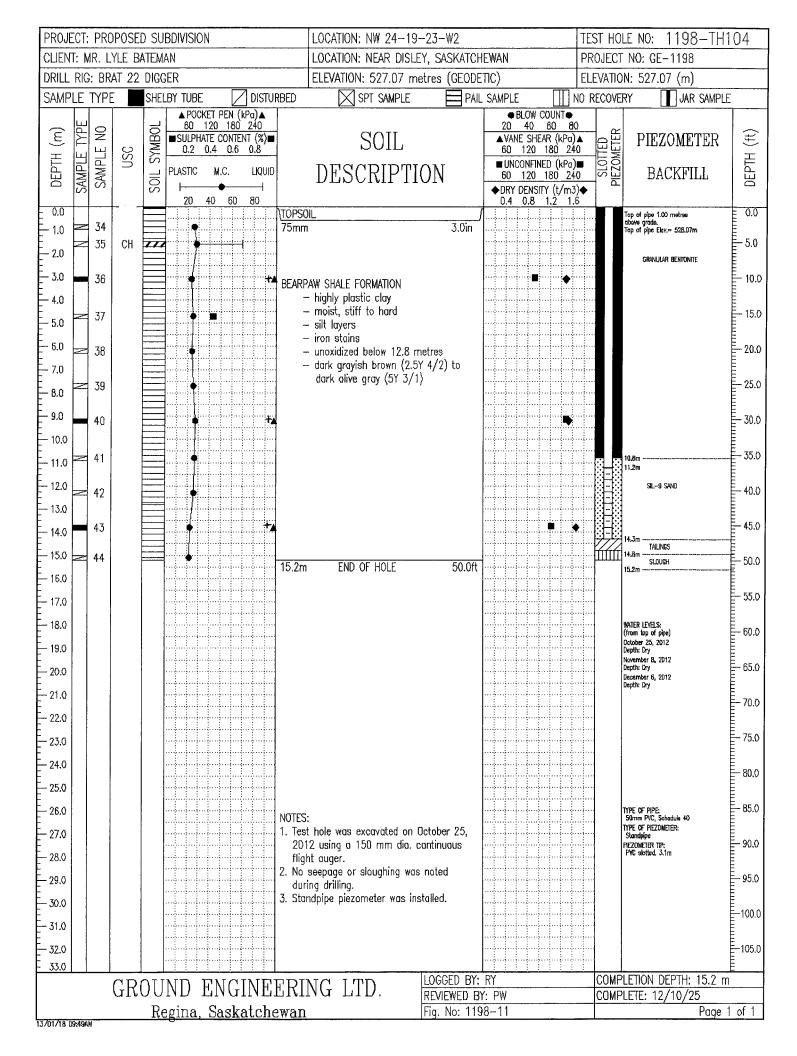
DNILLING	AND SAMPLING TERMS	LABORATORY TEST SYMBOLS		
SYMBOL	DEFINITION	SYMBOL	DEFINITION	
C.S.	Continuous Sampling	•	Moisture Content - Percent of Dry Weight	
Sy	75mm Thin Wall Tube Sample	 	Plastic and Liquid Limit determined in	
Sy (2)	50mm Thin Wall Tube Sample		accordance with ASTM D-423 and D-424	
PT (SS)	50mm O.D. Split Spoon Sample	. •	Dry Density - t/m ³	
LOWS 00mm	"N" Value - Standard Penetration Test		Shear Strength - As determined by Unconfined Compression Test	
Вад	Disturbed Bag Sample	A	Shear Strength - As determined by Fleld Vane	
No.	Sample Identification Number	A	Shear Strength - As determined by Pocket Penetrometer Test	
	Plezometer Tip	%SO₄	Water Soluable Sulphates - Percent	
S.I.	Slope indicator	4	of Dry Weight	
PG	Observed Seepage	M.A.	Grain Size Analysis	

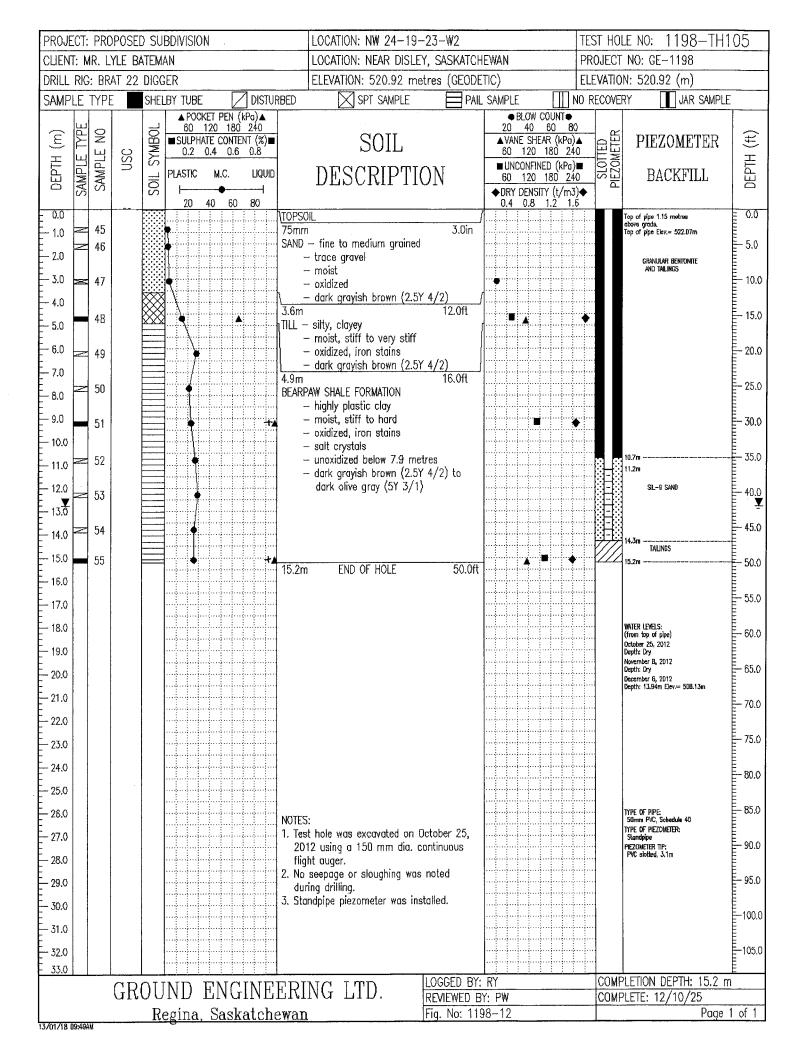
Soils that have been deposited from suspension from moving water.

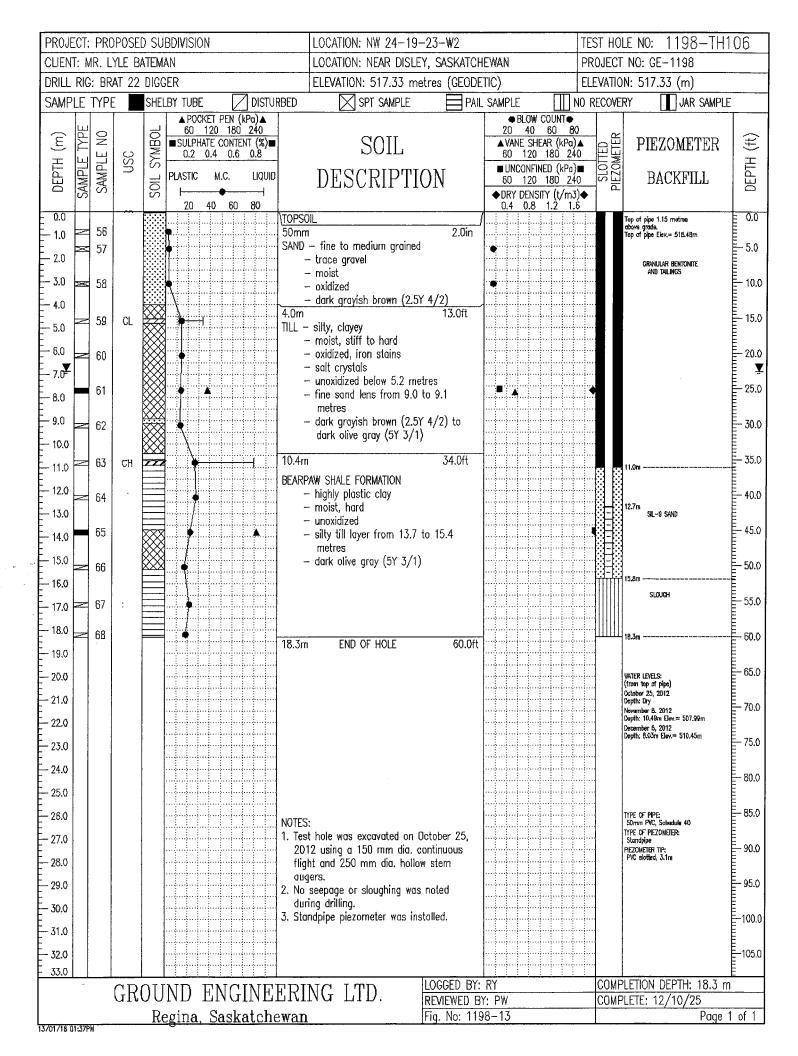

Soils that have been deposited from suspension in fresh water lakes.



The boundaries between soil strata have been established only at Bore Hole locations. Between Bore Holes, the boundaries are interpolated and may be subject to considerable error.

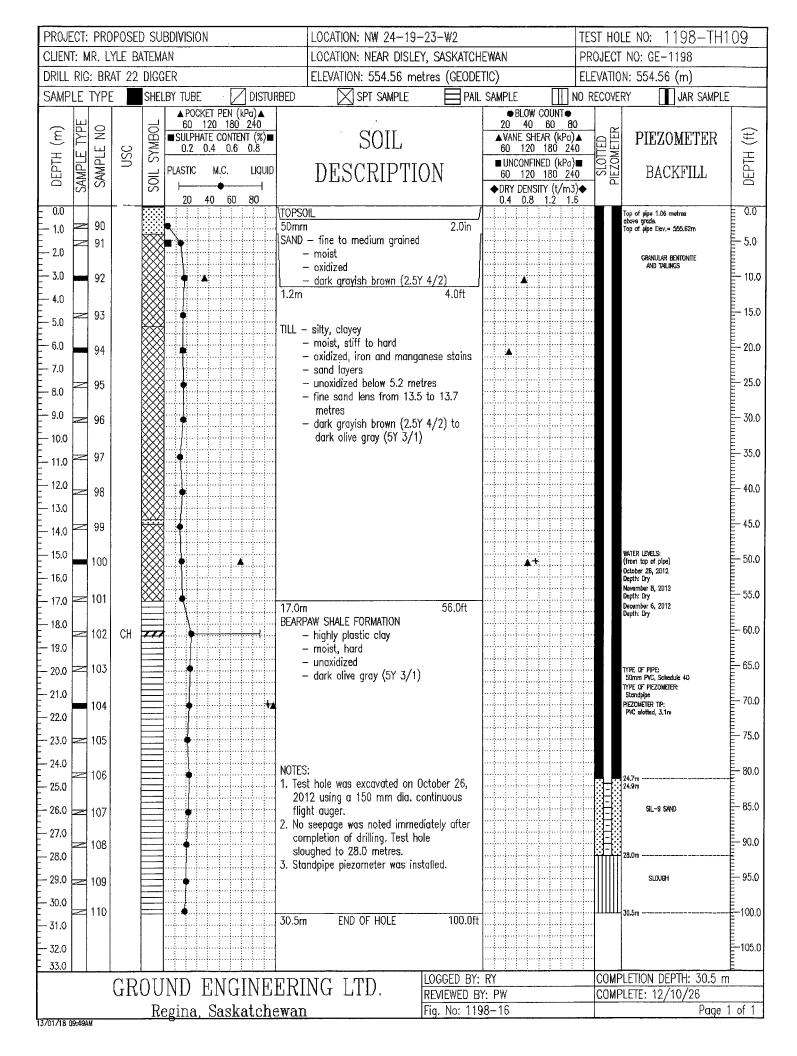

GROUND ENGINEERING CONSULTANTS LTD.	STRATIGRAPHIC CROSS SECTION 'B-B' PROPOSED RESIDENTIAL SUBDIVISION NW 24-19-23-W2 R.M. of DUFFERIN, SASKATCHEWAN				
CIVIL & GEOENVIRONMENTAL ENGINEERS 415—7th AVENUE REGINA, SASKATCHEWAN, CANADA					
CLIENT:	APPROVED:	DATE:	OWG. No.:		
MR. LYLE BATEMAN		FEBRUARY 12, 2013	GE-1198-6		

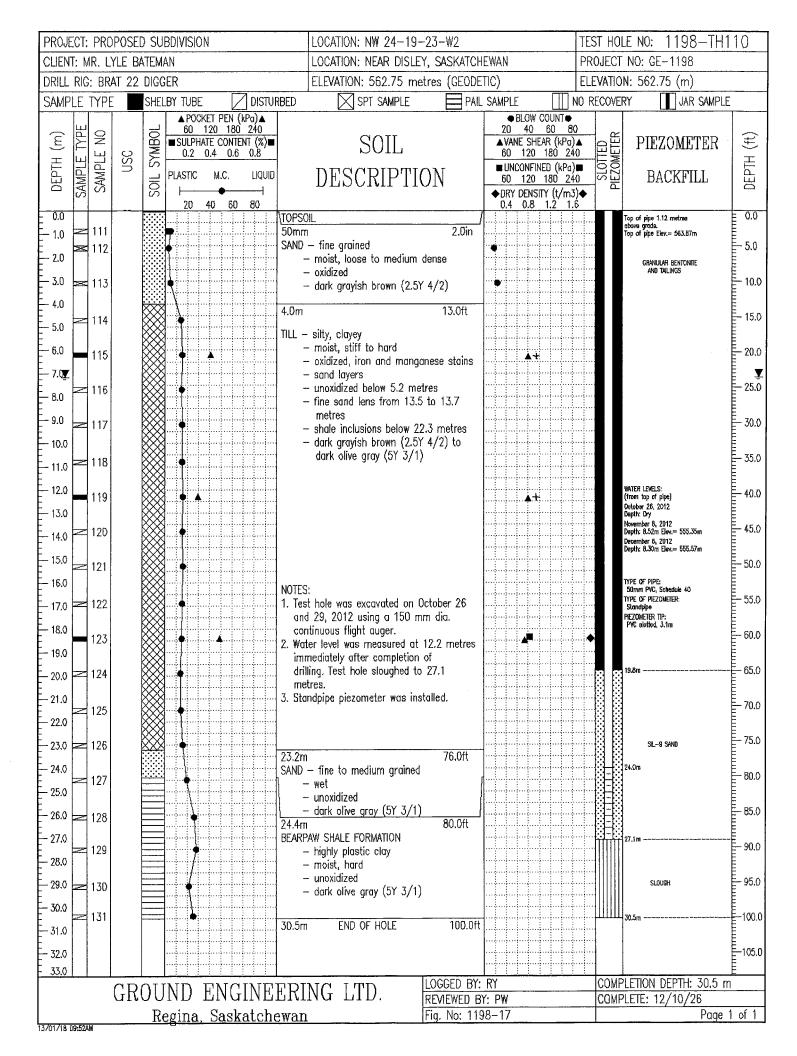




PROJECT: PRO			LOCATION: NW 24-19-23-W2	TEST HOLE NO: 1198-TH1(
CLIENT: MR. LY			LOCATION: NEAR DISLEY, SASKATCHEWAN	PROJECT NO: GE-1198
DRILL RIG: BRA			ELEVATION: 559.80 metres (GEODETIC)	ELEVATION: 559.80 (m)
SAMPLE TYPE	SHEL	BY TUBE DISTURBED	SPT SAMPLE PAIL SAMPLE [[NO RECOVERY JAR SAMPLE
DEPTH (m) SAMPLE TYPE SAMPLE NO	USC SYMBOL	▲ POCKET PEN (kPA) ▲ 60 120 180 240 ■ SULPHATE CONTENT (%) ■ 0.2 0.4 0.6 0.8 PLASTIC M.C. LIQUID	SOIL	● BLOW COUNT ● 20 40 60 80 ▲ VANE SHEAR (kPa) ▲ 60 120 180 240 ■ UNCONFINED (kPa) ■
	SOIL	20 40 60 80	DESCRIPTION	60 120 180 240 ◆DRY DENSITY (t/m3) ◆ 0.4 0.8 1.2 1.6
0.0 - 1.0 \(\rightarrow 22 - 2.0 \(\rightarrow 23	CL		TOPSOIL 150mm 6.0in TILL — silty, clayey — moist, stiff to very stiff	
- 3.0 24 - 4.0 25			- axidized, iron stains - salt crystals - dark grayish brown (2.5Y 4/2)	44
- 6.0 26 - 7.0 27			7,6m END OF HOLE 25.0ft	A+ B
- 9.0 - 10.0			TOTAL END OF HOLE 25:01	
— 11.0 — 12.0 — 13.0				
- 14.0 15.0 16.0			NOTES: 1. Test hole was excavated on October 23,	
— 17.0 — 18.0				
- 19.0 - 20.0				
- 21.0 - 22.0				
- 23.0 - 24.0			2012 using a 150 mm dia. continuous flight auger. 2. No seepage or sloughing was noted 0.5	
- 24.0 - 25.0			hours after completion of drilling. 3. Test hole was backfilled to surface	
- 26.0 - 27.0			with drill cuttings.	
- 28.0 - 29.0				
- 30.0				
- 31.0	CRAII	ND ENGINEERI	NC TO LOGGED BY: RY	COMPLETION DEPTH: 7.6 m
	GRUU <u>Re</u>	ио видинги	NG LID. REVIEWED BY: PW	COMPLETE: 12/10/23

PROJECT: PROPOSED SUBDIVISION								Ţ	OCATION: NW 24-19-23-W2	TEST HOLE NO: 1198-TH103		
CLIENT: MR. LYLE BATEMAN										PROJECT NO: GE-1198		
								·			ELEVATION: 561.48 (m)	
SAMPLE TYPE SHELBY TUBE DISTURBED						201/21				SPT SAMPLE PAIL SAMPLE III N	O RECOVERY JAR SAMPLE	
DЕРТН (m)	SAMPLE TYPE	SAMPLE NO	osn	SOIL SYMBOL	▲ POCKET PEN (kPA) ▲ 60 120 180 240 ■ SULPHATE CONTENT (%) ■ 0.2 0.4 0.6 0.8 PLASTIC M.C. LIQUID			240 (%) ■ 0.8 LIQU	ID	SOIL DESCRIPTION	● BLOW COUNT ● 20 40 60 80 ▲ VANE SHEAR (kPa) ▲ 60 120 180 240 ■ UNCONFINED (kPa) ■ 60 120 180 240 ◆ DRY DENSITY (t/m3) ◆	DEPTH (ft)
- 0.0				$\times\!\!\times\!\!\times$	20	40	60	80		TOPSOIL	0.4 0.8 1.2 1.6	€ 0.0
1.0 - 2.0		28 29		$\overset{\otimes}{\otimes}$	1					100mm 4.0in TILL — silty, clayey	1	5.0
- 3.0		30		$\overset{\otimes}{\otimes}$	•					 moist, stiff to very stiff axidized, iron and manganese stains 		10.0
4.0 - - - - - 5.0		31			•		A			 salt crystals dark grayish brown (2.5Y 4/2) to very dark grayish brown (2.5Y 3/2) 	A + B •	15.0
6.0		32			•					Tally cark grayion drawn (Eler by 2)		20.0
7.0 8.0		33				·····				7.6m END OF HOLE 25.0ft		25.0
9,0												30.0
— 10.0 - — 11.0												35.0
12.0												40.0
14.0												45.0
15.0 - 16.0												50.0
- 17.0												55.0
18.0 19.0												60.0
20.0				,								65.0
21.0 22.0										NOTES: 1. Test hale was excavated on October 23,		70.0
23.0 = 24.0										2012 using a 150 mm dia. continuous flight auger. 2. No seepage or sloughing was noted 0.25		75.0
25.0										hours after completion of drilling. 3. Test hole was backfilled to surface		80.0
26.0 - 27.0										with drill cuttings.		85.0
28.0												90.0
												95.0
31.0												100.0
			GR)[[ND F	NG	INI	EER	TN	IG LTD. LOGGED BY: RY	COMPLETION DEPTH: 7.6 m	
			O T 0,		gina,					REVIEWED BY: PW Fig. No: 1198–10	COMPLETE: 12/10/23 Page 1	1 of 1
3/01/18 D	0-400					~~~		, <u></u>		11.12.11.11.11.11.11.11		للننسا

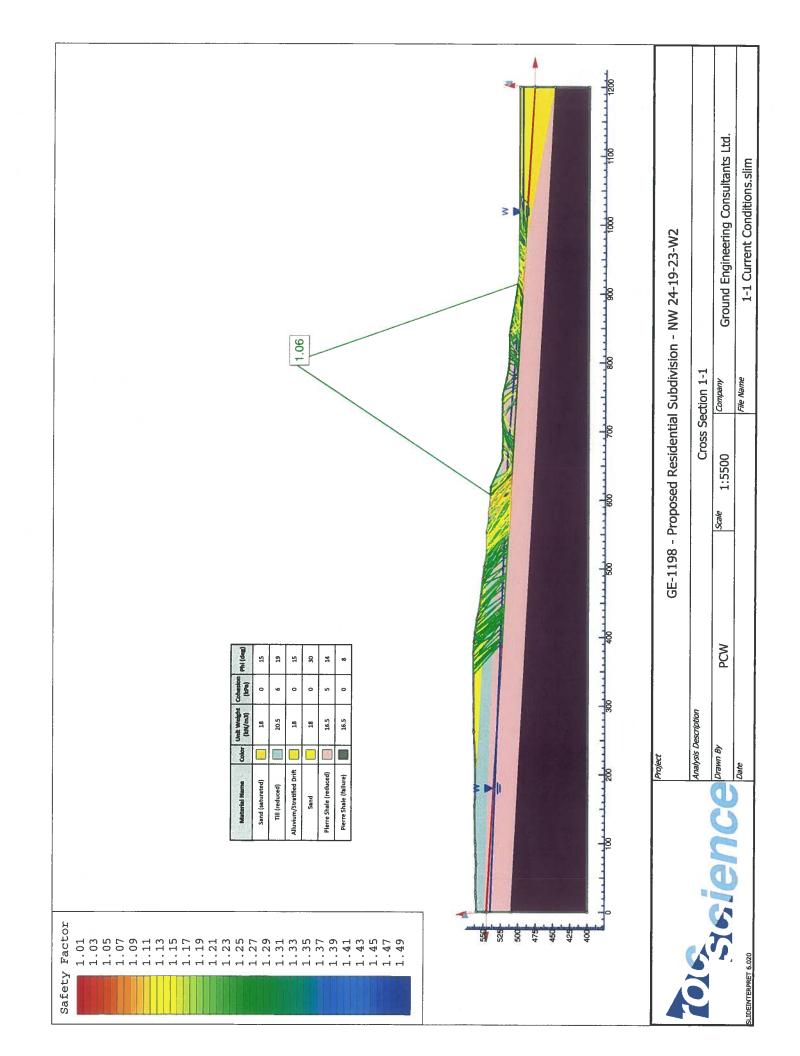


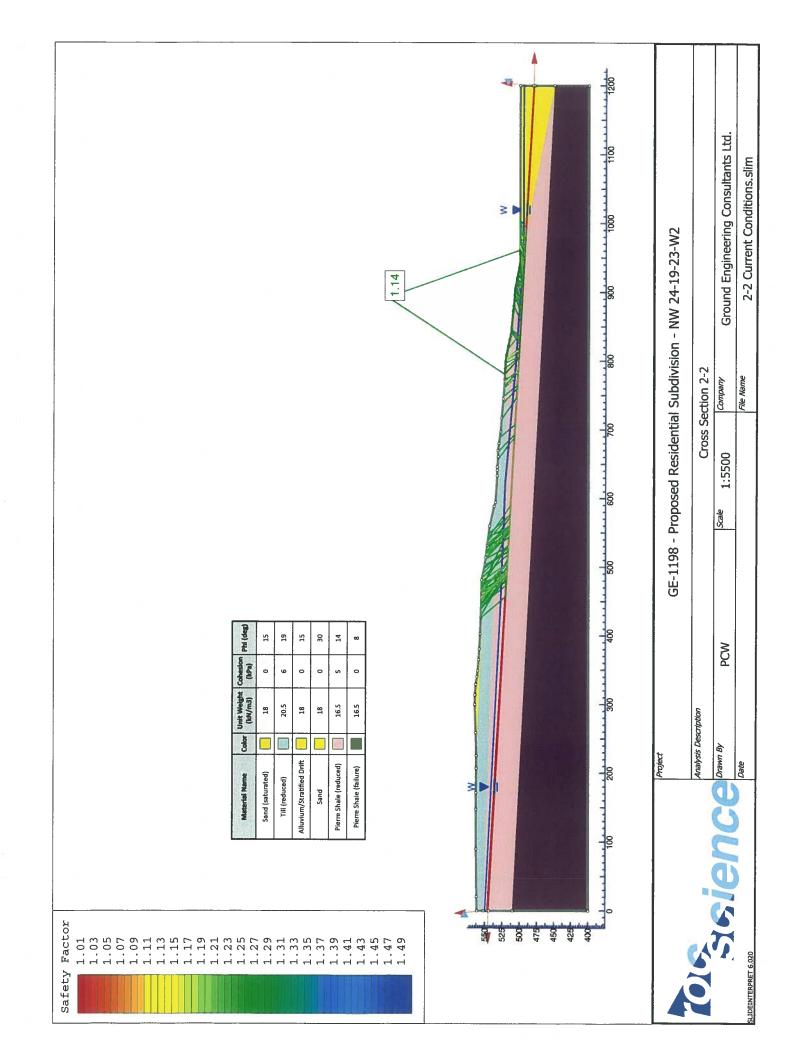


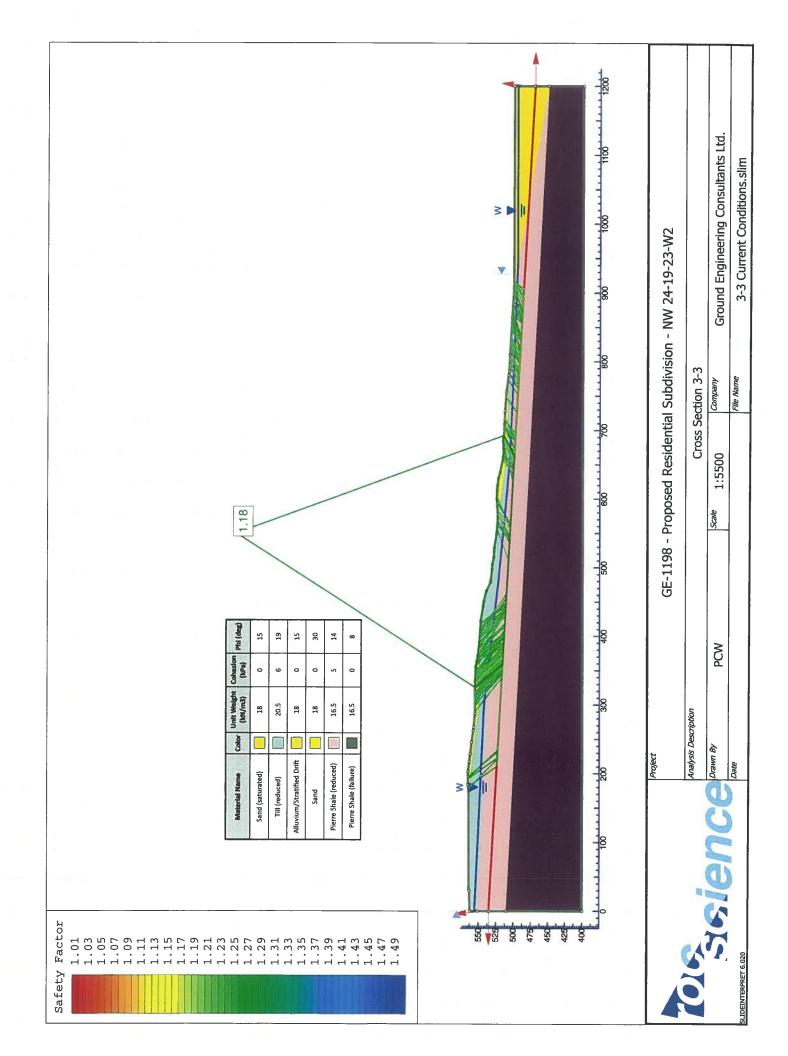
PROJECT: PROPOSED	SUBDIVISION	LOCATION: NW 24-19-23-W2M	TI	TEST HOLE NO: 1198—TH1	07
CLIENT: MR. LYLE BA		LOCATION: NEAR DISLEY, SASKATCH		PROJECT NO: GE-1198	
DRILL RIG: BRAT 22		ELEVATION: 533.95 metres (GEODE		ELEVATION: 533.95 (m)	
SAMPLE TYPE	SHELBY TUBE DISTURBED A POCKET PEN (kPa) A	SPT SAMPLE PAIL	SAMPLE NO	RECOVERY JAR SAMPLE	
DEPTH (m) SAMPLE TYPE SAMPLE NO USC	00 120 180 240 ■SULPHATE CONTENT (%) 0.2 0.4 0.6 0.8 PLASTIC M.C. LIQUID 1 20 40 60 80	SOIL DESCRIPTION	20 40 80 80 AVANE SHEAR (kPg) A 60 120 180 240 ■UNCONFINED (kPg) ■ 50 120 180 240 ◆DRY DENSITY (t/m3) ◆ 0.4 0.8 1.2 1.6	BACKFILL	DEPTH (ft)
0.0 69 -1.0 70 -2.0 71 -4.0 72 -5.0 73 -7.0 74 -9.0 75	TOPS 50ml		•	Top of pipe 1.09 metrse obeve grade. Top of pipe Elev.= 535.04m GRANULAR BENTONITE AND TAILINGS	15.0 25.0 25.0 30.0
- 10.0		m 43.0ft — silty, clayey — moist, very stiff to hard — unoxidized — dark olive gray (5Y 3/1)		12.8m	40.0 ¥ 45.0 45.0 50.0 50.0
- 18.0 80A CH E	18.0r	— fine grained — wet — unoxidized — dark olive gray (5Y 3/1)		SLOUGH 21.4m	65.0
- 22.0 - 23.0 - 24.0 - 25.0 - 26.0 - 27.0 - 28.0 - 29.0	21.4r NOTE 1. Te 20 fili 2. No	- highly plastic clay - moist, hard - unoxidized - dark olive gray (5Y 3/1) m END OF HOLE 70.0ft S: st hole was excavated on October 25, 212 using a 150 mm dia. continuous ght auger. b seepage or sloughing was noted uring drilling.		WATER LEVELS: (from top of pipe) October 25, 2012 Depth: Dry Nevember 8, 2012 Depth: 14.18m Elev.= 520.86m Dacamber 6, 2012 Depth: 14.06m Elev.= 520.98m TYPE OF PIPE 50mm PVC, Schedule 40 TYPE OF PIEZOMETER: Standajbe PIEZOMETER ITP:	80.0 85.0 85.0 85.0
- 30.0 - 31.0 - 32.0 - 33.0 GR(andpipe piezometer was installed. ING LTD. LOGGED BY: REVIEWED BY	r: PW	COMPLETION DEPTH: 21.3 m COMPLETE: 12/10/25 Page	

PROJE(CT:	PRO	POSEI) SUE	BDIVISION			LOCATION: NW 24-19-23-W2	TEST HOLE NO: 1198-TH108
CLIENT:								LOCATION: NEAR DISLEY, SASKATCHEWAN	PROJECT NO: GE-1198
DRILL F	RIG:	: BR/	AT 22	DIGG	ER			ELEVATION: 563.50 metres (GEODETIC)	ELEVATION: 563.50 (m)
SAMPL	E	TYPE		SHEL	BY TUBE	DIS	STURBED	SPT SAMPLE PAIL SAMPLE	
DEPTH (m)	SAMPLE TYPE	SAMPLE NO	nsc	SYMBOL	60 ■ SULF 0.2	PHATE CONTEN 0.4 0.6	240 NT (%) ■ 0.8	SOIL	● BLOW COUNT ● 20 40 60 80 ▲ VANE SHEAR (kPa) ▲ 60 120 180 240 ■ UNCONFINED (kPa) ■ 60 120 180 240
岜	NA NA NA NA NA NA NA NA NA NA NA NA NA N	SAN		SOIL	PLASTIC I———	M.C.	LIQUID ———	DESCRIPTION	60 120 180 240 ◆ DRY DENSITY (t/m3)◆
- 0.0					20	40 60	80	Brancall	0.4 0.8 1.2 1.6
1.0		84		\bowtie	•			TOPSOIL 2.0in	
E		85	CL		-	1		SAND — silty, fine grained	5.0
2.0				\bowtie				- moist	
3.0		86		\bowtie	•		+4	- oxidized	10.0
4.0					-/			— dark grayish brown (2.5Y 4/2) 300mm	—∭
5.0	_	87			(TILL — silty, clayey	15.0
E								— moist, stiff to hard	20.0
Ē ľ	_	88			7			- oxidized, iron stains	E 20.0
7.0		89		\boxtimes	7			— salt crystals — dark grayish brown (2.5Y 4/2)	25.0
8.0								3.6m 12.0ft	
9.0								SAND — fine to medium grained	30.0
10.0								- moist, wet below 6.7 metres	
E 11.0								– oxidized– dark grayish brown (2.5Y 4/2)	35.0
E								7.0m 23.0ft	
12.0	1							TILL — clayey, silty	40.0
13.0								— moist, stiff — oxidized	45.0
14.0								- dark grayish brown (2.5Y 4/2)	F 40.0
15.0	1							7.6m END OF HOLE 25.0ft	50.0
16.0									
17.0									55.0
Εl									
18.0									60.0
19,0									
20.0									65.0
21.0								NOTES:	70.0
22.0								1. Test hole was excavated on October 25,	70.0
23.0								2012 using a 150 mm dia. continuous	75.0
E								flight auger.	
24.0								No seepage was noted immediately after completion of drilling. Test hole	80.0
25.0								sloughed to 6.4 metres.	
26.0								3. Test hole was backfilled to surface	85.0
27.0								with drill cuttings immediately after	
28.0								completion of drilling.	90.0
E									95.0
29.0									
30.0									100.0
31.0									
			GR	$\overline{011}$	ND F	ENGIN	EERII	NG LTD. LOGGED BY: RY	COMPLETION DEPTH: 7.6 m
			arv			<u>Saskato</u>		REVIEWED BY: PW Fig. No: 1198–15	COMPLETE: 12/10/25 Page 1 of 1
13/01/18 09	7:49AI	M		10(~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ii dili	122	

		GROUND ENGINEERING CONSULTANTS LTD.	JOB No:	GE-1198	DATE:	October 29, 2012	TECH:	F. LABORTE	RTE
CIVIL 8	CIVIL & GEOENVIRONMENT 415 - 7th AVENUE - REGINA - SARATC SAN 4P1 TELEPHONE (309) 569-8075 F	VIRONMENTAL ENGINEERS REGINA - SASKATCHEWAN - CANADA REGINGHING SASCORME (2006) 566-3677	CLIENT: PROJECT:	GI - PROP	MH. LYLE BAIEMAN GI - PROPOSED SUBDIVISION				
	GRAIN SIZE CURVE (A.S.T.M. C-136, C.S.A. A23.2-2A & 5A)	CURVE *. A23.2-24 & 5A)	LOCATION:	NW 24-19	-23-W2, RM OF DU	NW 24-19-23-W2, RM OF DUFFERIN, SASKATCHEWAN	AN		
		GRAIN SIZE CATEGORIES AS DESIG	GORIES AS DESI	GNATED BY A.S.	NATED BY A.S.T.M. STANDARDS				
COBI	COBBLES	GRAVEL SIZES	COARSE	SAND SIZES MEDIUM		SILT AND CLAY SIZES			
							SIZE OF	SPECIFIED	PERCENT
5							OPENING	% FINER	FINER
-					The Late Company of the Company of t		(mm)	THAN	THAN
c	6		/			1			
,,	2			1			75.0		100
•							37.5		100
æ	08						25.0		100
							19.0		100
7	70						9.51		100
			5				4.75		86
	09						2.00		96
				•	,		0.850		87
	20						0.425		52
							0.250		15
DA:	40						0.150		80
	200						0.075		2
7	-								
•							GRAIN	PARTICLE SIZE BANGE	PERCENT
N	50						CATEGORY	SIZE PAINGE (mm)	DEI AINED
÷							GRAVEL	75 to 4.75	2
-					1		COARSE SAND	4.75 to 2.0	2
			i		•		MEDIUM SAND	2.0 to 0.425	44
	100	10	-		0.1	0.01	FINE SAND	0.425 to 0.075	47
			GRAIN SIZE- millimetres	nillimetres			SILI & CLAY	< 0.075	2
SAMPLE I	SAMPLE DESCRIPTION:	SAND, A LITTLE SILT AND CLAY, A TRACE OF GRAVE	CLAY, A TRACE	OF GRAVEL.					
MATERIAL	MATERIAL SUPPLIED BY:				SAMPLED BY	R YAREMKO OF G	BOLIND ENGINE	YABEMKO OF GROUND ENGINEERING CONSULTANTS LTD	TCITO
SAMPLE L	SAMPLE LOCATION:	TH101					CERTIEY TESTING PR	OCEDIIBES IN ACCORDA	NOE WITH
SAMPLE NUMBER:	UMBER:	3 AT 10' BELOW GRADE	DATE SAMPLED	. O	October 23, 2012		C.S.A. & A.S.T.M. STA OF THE TESTING PE	C.S.A. & A.S.T.M. STANDARDS FOR THAT POPTION OF THE TESTING PERFORMED BY THIS COMPANY	TION
DISTRIBUTION:	HON:						GROUND ENGINE	ERING CONSULTANTS LT	<u>o</u>
	:						Fer: KELLY N	KELLY MAUNDER, A.Sc.T.	


GROU	JND EI VSCLT	GROUND ENGINEERING CONSULTANTS LTD.	JOB No:	GE-1198 DA	DATE:	October 29, 2012	TECH:	F. LABORTE	ORTE
CIVIL & G 415 - 7th S4N 4P1	CIVIL & GEOENVIRONMENT 415 - 7th AVENUE - REGINA - SASKATO 54N 4P1 TELEPHONE (306) 569-3075 4 E-MAIL: GROUNDENG GAGGESTS	NMENTAL ENGINEERS A - SASKATCHEWAN - CANADA S 569-8075 FAX (306) 566-3877	PROJECT:	GI - PROPOSED SUBDIVISION	NOISION				
(A.	GRAIN SIZE CURVE (A.S.T.M. C-136, C.S.A. A23.2-2A & 5A)	. ax	LOCATION:	NW 24-19-23-W2, RM OF DUFFERIN,	1 OF DUFF	ERIN, SASKATCHEWAN	Z		
		GRAIN SIZE CATE	GORIES AS DESIG	GRAIN SIZE CATEGORIES AS DESIGNATED BY A.S. I.M. STANDARDS	ARDS				
COBBLES	, s	GRAVEL SIZES	SAND COABSE MEDITIM	SAND SIZES		SILT AND CLAY SIZES			
·							SIZE OF	SPECIFIED	PERCENT
100	— • ·		- Andrew Company of the Company of t		-		OPENING	% FINER	FINER
3				<i></i>		FI	(mm)	THAN	THAN
06							, ,		9
3							/2.0		<u> </u>
Q							37.5	-	100
3							25.0		100
1				•			19.0		00 F
2							9.51		100
						i i	4.75		100
I A H ⁻							2.00		66
							0.850		86
S EINE							0.425		96
						The second second	0.250		74
30F		4					0.150		28
							0.075		8
90								33	
							GRAIN	PARTICLE	PERCENT
20							SIZE	SIZE RANGE	RETAINED
							GRAVEI	75 to 1 75	T
9					•		COARSE SAND	4.75 to 2.0	
							MEDIUM SAND	2.0 to 0.425	. ო
o '							FINE SAND	0.425 to 0.075	88
-	9 <u>6</u>	0,	1 GRAIN SIZE- mill	0.1 illimetres	-	0.01	SILT & CLAY	< 0.075	8
SAMPLEDE	SAMPI E DESCRIPTION .	SAND A LITTLE SILT AND CLAY A TRACE OF	O BOAGE & VAIO	C CDAVE					
		אויס, א בו ובר טובי אות	עבאו, א וחאטב כ						
MATERIAL SI	MATERIAL SUPPLIED BY:			SAMPL	SAMPLED BY:	R. YAREMKO OF GI	ROUND ENGINE	YAREMKO OF GROUND ENGINEERING CONSULTANTS LTD	NTS LTD.
SAMPLE LOCATION:	ATION:	TH 101				WEG	CERTIFY TESTING PR	OCEDURES IN ACCORDA	ANCE WITH
SAMPLE NUMBER:	MBER:	7 AT 30' BELOW GRADE	DATE SAMPLED	October 23, 2012	23, 2012		C.S.A. & A.S.T.M. ST, OF THE TESTING PE	C.S.A. & A.S.T.M. STANDARDS FOR THAT PORTION OF THE TESTING PERFORMED BY THIS COMPANY OF THE THOSING SOCIAL TRANSPORTED IN THIS COMPANY	ATION PANY
DISTRIBUTION:	:X						GHOOND ENGINE	EERIING CONSOL I AN I S L	ń
							Per: KELLY I	KELLY MAUNDER, A.Sc.T.	


OH (C)		GROUND ENGINEERING	JOB No:	GE-1198	DATE:	October 30, 2012	TECH:	F. LABORTE	RTE
CIVIL 82 0	CIVIL & GEOENVIRONMENTAL 416 - 7th AVENUE - REGINA - SASKATCHEW, S4N 4P1 - TELEPHONE (306) 506-5076 FAX (NMENTAL ENGINEERS • SASKATCHEWAN - CANADA)) 508-8075 FAX (306) 568-3877	CLIENT:	MR. LYLE BATEMAN	MR. LYLE BATEMAN GI - PROPOSED SUBDIVISION	Z			
\$	GRAIN SIZE CURVE (A.S.T.M. C-136, C.S.A. A23.2-24 & 54)	CURVE 4, A23.2-2A & 5A)	LOCATION:	NW 24-19-23-V	NW 24-19-23-W2, RM OF DUFFERIN,	FERIN, SASKATCHEWAN	N		
		GRAIN SIZE CATE	GORIES AS DESIG	GRAIN SIZE CATEGORIES AS DESIGNATED BY A.S.T.M. STANDARDS	STANDARDS				
COBBLES	ES	GRAVEL SIZES	SAND COARSE MEDIUM	SAND SIZES DIUM FINE		SILT AND CLAY SIZES			
							SIZE OF	SPECIFIED	PERCENT
							OPENING	% FINER	FINER
3							(mm)	THAN	THAN
06							75.0		100
							37.5		
80							25.0		8 8
							19.0		93
20			/				9.51		85
							4.75		78
АНТ 8							2.00		69
							0.850		45
NI J							0.425		16
TNE							0.250		6
							0.150		7
3d 80							0.075		2
}							MIVOS	E LOITOVO	DEDCENIT
5							SIZE	SIZE RANGE	RETAINED
3							CATEGORY	(mm)	
5				/			GRAVEL	75 to 4.75	22
2	V			1	1		COARSE SAND	4.75 to 2.0	o o
•							MEDIUM SAND	2.0 to 0.425	53
· ·	100	10	GBAIN SIZE, millimetres	limetres	0.1	0.01	FINE SAND SILT & CLAY	0.425 to 0.075 < 0.075	5
				2		_			
SAMPLE DI	SAMPLE DESCRIPTION:	SAND, SOME GRAVEL, A LITTLE SILT AND CL	ITTLE SILT AND C	LAY.					
MATERIAL S	MATERIAL SUPPLIED BY:				SAMPLED BY:	R. YAREMKO OF G	ROUND ENGINE	R. YAREMKO OF GROUND ENGINEERING CONSULTANTS LTD	VTS LTD.
SAMPLE LOCATION:	CATION:	TH105				WE	CERTIFY TESTING PR	OCEDURES IN ACCORDA	NCE WITH
SAMPLE NUMBER:	IMBER:	46 AT 5' BELOW GRADE	DATE SAMPLED		October 23, 2012		O.S.A. & A.S.T.M. STA OF THE TESTING PE	C.S.A. & A.S.T.M. STANDARDS FOR THAT PORTION OF THE TESTING PERFORMED BY THIS COMPANY OF OTHER THAN THE COMPANY	TION SANY
DISTRIBUTION:	:NOI						Per:	EFFING CONSULTANTS L	<u>a</u>
								KELLY MAUNDER, A.Sc.T.	


GRAVEL SIZE TH107 TH107	CONSULT & GEOENVIR	CHOCKE ENGINEERING CONSULTANTS LTD. CIVIL & GEOENVIRONMENTAL ENGINEERS	JOB No: CLIENT:	GE-1198 MR. LYLE BATEMAN	DATE:	October 30, 2012	TECH:	F. LABORTE	RTE
COMMINISTE CATEGORIES AS DESCRIANTED BY A S.T.M. STANDARDS ST. AND CLAY BZES	AVENUE - REC TELEPHONE (E-MAIL: groun	FAX (PROJECT:	GI - PROPOSED SI	UBDIVISION				
SIZE OF SIZE CATEGORIES AS DESIGNATED BY A S.T.M. S.T.M.D.GLAY SCEES	GRAIN SIZ	ZE CURVE :S.A. A23.2-2A & 5A)	LOCATION:	NW 24-19-23-W2, F	RM OF DUFF	ERIN, SASKATCHEWA	N		
STITRO OF SPECIFIED	SI RECO	GBAIN SIZE CATE	GORIES AS DESIG	SNATED BY A.S.T.M. STAI					
SAIND A LITTLE GRANE IS. SAMPLED BY: R. YAREMKO OF GROUND ENGINEERING CONSOLTANT					SIL.	AND CLAY SIZES			
Than Than							SIZE OF	SPECIFIED	PERCENT
10 10 10 10 10 10 10 10		-			_		OPENING (mm)	% FINER	FINER
150							()	NACI	NACI
19.0 1		/	/				75.0		9
31.5 25.0 19.0 9.51 4.75 2.00 0.850 0.425 0.250 0.150			<u> </u>			the state of the s	73.0		2
\$\frac{25.0}{4.75}\$ \$\frac{25.0}{0.425}\$ \$\frac{0.250}{0.150}\$ \$\frac{0.250}{0.075}\$ \$\f							37.5		100
19.0 9.51 4.75 2.00 0.850 0.425 0.256 0.256 0.075 0.07							25.0		100
## 1.75 4.75 4.75 2.00 0.850 0.425 0.260 0.150 0.1							19.0		100
4.75 2.00 0.850 0.425 0.250 0.425 0.250 0.150 0.075 0.							9.51		97
2.00 0.850 0.425 0.425 0.150 0							4.75		96
0.050 0.15							2.00		68
0.150 0.15							0.850		29
0.150 0.15							0.425		24
Control Cont						00 100 100 100 100 100 100 100 100 100	0.250		8
Caregory							0.150		9
Caraca C							0.075		4
SAND, A LITTLE GRAVEL, A TRACE OF SILT AND CLAY. SAMPLED BY: R. YAREMKO OF GROUND ENGINEERING CONSULTANT TH107 T5 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012 GROUND ENGINEERING CONSULTANT TH307 CS. A. & A.S.T.M. STANDARDS FOR THAT PORTY CROWN GRADE CS. 2012 CS. 2014 CS. 2015 CS									
CATEGORY (mm)							GRAIN	PARTICLE SIZE DANCE	PERCENT
GRAVEL 75 to 4.75							CATEGORY	(mm)	
COARSE SAND 4.75 to 2.0							GRAVEL	75 to 4.75	9
10 GRAIN SIZE-millimetres 0.1 0.01				1			COARSE SAND	4.75 to 2.0	വ
10 10 10.425 to 0.075 SILT & CLAY CROUND ENGINEERING CONSULTANTS LT					•		MEDIUM SAND	2.0 to 0.425	65
GRAIN SIZE- millimetres SAND, A LITTLE GRAVEL, A TRACE OF SILT AND CLAY. SAMPLED BY: R. YAREMKO OF GROUND ENGINEERING CONSULTANTS LTITLE CSAT 30' BELOW GRADE DATE SAMPLED: October 23, 2012 75 AT 30' BELOW GRADE DATE SAMPLED: A THIS CONFOUND ENGINEERING CONSULTANTS LTD. A SAT 30' BELOW GRADE DATE SAMPLED: A SAT 30' BELOW GRADE DATE SAMPLED: A Per: KELLY MAUNDER, A SC. T. RELLY MAUNDER, A S	100	10			0.1	0.01	FINE SAND	0.425 to 0.075	50
SAND, A LITTLE GRAVEL, A TRACE OF SILT AND CLAY. SAMPLED BY: R. YAREMKO OI TH107 75 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012			GRAIN SIZE- m	Illimetres			SILT & CLAY	< 0.075	4
SAMPLED BY: R. YAREMKO OI 75 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012	SCRIPTION	: SAND, A LITTLE	A TRACE OF SILT						
TH107 SAMPLED BY: R. YAREMKO OI 75 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012									
TH107 75 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012	JPPLIED B	γ:		SAN		R. YAREMKO OF G	ROUND ENGINE	ERING CONSULTAR	ITS LTD.
75 AT 30' BELOW GRADE DATE SAMPLED: October 23, 2012	SAMPLE LOCATION:	TH107				WE	CERTIFY TESTING PR	OCEDURES IN ACCORDA	NCE WITH
	BER:	75 AT 30' BELOW GRADE	DATE SAMPLE		er 23, 2012		OS.A. & A.S.T.M. STA	ANDARDS FOR THAT POR RFORMED BY THIS COM	TION ANY
	Ë						GROUND ENGINE	ERING CONSULTANTS L	Ġ.
								AAUNDER, A.Sc.T.	ſ

GROU	IND EF	GROUND ENGINEERING CONSULTANTS LTD.	JOB No:		GE-1198 DATE :	October 30, 2012	TECH:	F. LABORTE	ORTE
CIVIL & GEC 415 - 7th AVE 84N 4P1 TE	CIVIL & GEOENVIRONMENT 415 - 7th AVENUE - REGINA - SASKATO SAN 4P1 TELEPHONE (308) 569-5075	NMENTAL ENGINEERS	CLIENT:	É	MR. LYLE BATEMAN GI - PROPOSED SUBDIVISION	NOIS			
(A.	SIZE 36, C.S./	CURVE	LOCA		/ 24-19-23-W2, RM OF I	NW 24-19-23-W2, RM OF DUFFERIN, SASKATCHEWAN	WAN		
		GRAIN SIZE CATEGORIES AS DESIG	EGORIES A	S DESIGNATED	NATED BY A.S.T.M. STANDARDS				
COBBLES	S	GRAVEL SIZES	COARSE	SAND SIZES MEDIUM	FINE	SILT AND CLAY SIZES			
							SIZE OF	SPECIFIED	PERCENT
100			- -				OPENING (mm)	% FINER THAN	FINER
				/					
06			-				75.0		100
ć							37.5		100
26							25.0		100
			1				19.0		100
20							9.51		100
							4.75		86
В. В							2.00		6
			1				0.850		93
S S							0.425		64
I IN							0.250		23
30F							0.150		12
							0.075		7
<u></u>									
8							GRAIN	SIZE DANGE	PERCENT
50							CATEGORY	SIZE PANGE (mm)	DE I AINED
ç					كمر		GRAVEL	75 to 4.75	2
2					/		COARSE SAND	4.75 to 2.0	-
Ċ		-					MEDIUM SAND	2.0 to 0.425	33
, Ē	100	10	4	1	0.1	0.01	FINE SAND	0.425 to 0.075	57
			GRAIN	GRAIN SIZE- MIIIMETES	S.		200	2007	
SAMPLE DESCRIPTION	SCRIPTION:	SAND, A LITTLE SILT AND CLAY, A TRACE O	CLAY, A T	TRACE OF GRAVE	ÆL.				
MATERIAL SI	MATERIAL SUPPLIED BY:				SAMPLED BY		R VAREMKO OF GROUND ENGINEERING CONSTITANTS LTD	EBING CONSTITUTE	OT STA
SAMPLE LOCATION:	ATION:	TH110					WE CERTIEV TESTING BB	SOCEDIBES IN ACCORDA	NOT WITH
SAMPLE NUMBER:	IBER:	113 AT 10' BELOW GRADE		DATE SAMPLED:	October 23, 2012	12	C.S.A. & A.S.T.M. ST. OF THE TESTING PE	WECKTINT ISSUING THOUGHOUSE IN ACCOUNTAINED WITH CS.A. & A.S.T.M. STANDARDS FOR THAT PORTION OF THE TESTING PERFORMED BY THIS COMPANY	INCE WITH
DISTRIBUTION:	 						GROUND ENGINE	EERING CONSULTANTS L	TD.
							Per: KELLY!	KELLY MAUNDER, A.Sc.T.	

APPENDIX A

APPENDIX B

3300 - SPECIFICATION FOR SUB-BASE COURSE

3300 - 1 DESCRIPTION

- 1.01 The work shall consist of spreading and compacting screened or crushed aggregate on a prepared surface.
- 1.02 The following definitions shall apply for this specification:
 - (a) Mean:

The arithmetic average of a set of 'n' test results constituting the sample.

(b) Moving average:

The arithmetic mean of 3 consecutive test results.

(c) Sub-base aggregate:

The aggregate before mixing, when binder is to be added or the aggregate before spreading and compacting, when no binder is to be added.

(d) Sub-base mix:

The sub-base aggregate after mixing with binder and water but before spreading and compacting.

(e) Sub-base course:

The sub-base aggregate or sub-base mix in place on the road during and after spreading and compacting.

3300 - 2 MATERIALS

Aggregate

2.01 Sub-base aggregate shall be composed of sound, hard, and durable particles of sand, gravel and rock free from injurious quantities of soft or flaky particles, shale, loam, clay balls and organic or other deleterious material.

3300 - 3 CONSTRUCTION

General

3.01 (a) Sub-base course shall comply with the requirements listed in Table 1:

TABLE 1

Sieve Designation	Percent By We	ight Passing Canad Series	ian Metric Sieve			
		TYPE				
	6	8	10			
50.0 mm	100.0	100.0	100.0			
2.0 mm	nm 0 - 80.0 0 - 90.0					
400 um	0 - 45.0 0 - 60.0					
160 um	0 - 20.0					
71 um	0 - 6.0	0 - 15.0	0 - 20.0			
Plasticity Index ((all types)) - 6.0				

January 1996 3300 1 of

3505 - 2 MATERIALS

Aggregate

2.01 Base aggregate shall be composed of sound, hard and durable particles of sand, gravel and rock free from injurious quantities of elongated, soft or flaky particles, shale, loam, clay balls and organic or other deleterious material.

3505 - 3 CONSTRUCTION

General

3.01 (a) Base course shall comply with the requirements listed in Table 1.

TABLE 1

	PERCENT BY WEIGH	HT PASSING CANADIAN ME	ETRIC SIEVE SERIES
SIEVE DESIGNATION		TYPE	
	31	33	35
31.5 mm	100.0		
18.0 mm	75.0 - 90.0	100.0	100.0
12.5 mm	65.0 - 83.0	75.0 - 100.0	81.0 - 100.0
5.0 mm	40.0 - 69.0	50.0 - 75.0	50.0 - 85.0
2.0 mm	26.0 - 47.0	32.0 - 52.0	32.0 - 65.0
900 um	17.0 - 32.0	20.0 - 35.0	20.0 - 43.0
400 um	12.0 - 22.0	15.0 - 25.0	15.0 - 30.0
160 um	7.0 - 14.0	8.0 - 15.0	8.0 - 18.0
71 um	6.0 - 11.0	6.0 - 11.0	7.0 - 12.0
Plasticity Index	0 - 7.0	0 - 6.0	0 - 5.0
Fractured Face %		50.0 Minimum	
Light Weight Pieces %		5.0 Maximum	

- (b) A tolerance of 3% in the percent by weight passing the maximum size sieve shall be permitted providing 100% of the oversize passes the 40.0 mm sieve for Type 31 base course and the 22.4 mm sieve for Types 33 and 35 base course.
- 3.02 The following shall apply to Department owned or controlled aggregate sources shown on the plans or as described in the Special Provisions:
 - (a) Overburden shall be removed from material deposits in accordance with Specification 2260 For Removal Of Overburden.
 - (b) Rock passing a 450 mm square opening screen and larger than the maximum specified size shall be crushed and incorporated simultaneously throughout the crushing operation.
 - (c) Stockpiles shall be constructed in accordance with Specification 3600 For Stockpiling Aggregates.
- 3.03 Binder, filler, and blender sand shall be provided in accordance with Specification 3400 For Binder, Filler And Blender Sand.
- 3.04 Binder, filler and blender sand shall be added using a separate conveyor system.
- 3.05 Binder, filler and blender sand feeds shall be accurately controlled and coordinated.

January 1996 3505 2 of 7